11.1.1 Top new questions this week

11.1.1.1 Efficient way to reconstruct matrix from list of iterated dot products
11.1.1.2 Is it acceptable programming practice to reference a part of a slot (#[[1]], #[[2]], and #[[3]], for example)? If not, what alternative should I use?
11.1.1.3 Quickly computing product of Householder reflections $\prod_ v  I - v v^T$
11.1.1.4 Reordering a string using patterns
11.1.1.5 Numerical approximation of implicit functions
11.1.1.6 Bathtub vortex simulation with Mathematica FEM
11.1.1.7 Definite Integral doesn't return results
11.1.1.1 Efficient way to reconstruct matrix from list of iterated dot products

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=309819

Suppose I have a list of $n$ iterated dot products between an invertible $n \times n$ matrix $A$ and a length $n$ vector $x$ 
... 
[mathematical-optimization] [linear-algebra]
 
asked by ydd https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=72953 Score of 8
answered by A. Kato https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=62063 Score of 11
11.1.1.2 Is it acceptable programming practice to reference a part of a slot (#[[1]], #[[2]], and #[[3]], for example)? If not, what alternative should I use?

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=309749

Suppose I have a list of lists -- specifically, a rectangular array/matrix called  myList : 
... 
[map] [pure-function]
 
asked by Andrew https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=1185 Score of 7
answered by Jason B. https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=9490 Score of 4
11.1.1.3 Quickly computing product of Householder reflections $\prod_ v  I - v v^T$

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=309744

I'm looking to speed up computation of the following quantity for a list of $d$ vectors $v\in \mathbb{R}^d$ 
$$A=\prod_v I - v v^T$$ 
This is just a product of Householder reflections, and naive ways of ... 
[performance-tuning] [linear-algebra]
 
asked by Yaroslav Bulatov https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=217 Score of 6
answered by Michael E2 https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=4999 Score of 7
11.1.1.4 Reordering a string using patterns

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=309855

I have a list of digits and a list of subsets of this list: for example, target= {"0", "1", "2", "3", "6", "7", "8", "9"}... 
[pattern-matching]
 
asked by Sam314159 https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=98402 Score of 5
answered by Roman https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=26598 Score of 7
11.1.1.5 Numerical approximation of implicit functions

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=309735

I have an expression $t \equiv t(x)$, 
\begin{equation} 
t = 2^{-2+\frac{a}{2}} c^{1-\frac{a}{2}} \Gamma\left(-1+\frac{a}{2}, \frac{c}{2} x^2\right) 
\end{equation} 
where $\Gamma\left(-1+\frac{a}{2}, \... 
[equation-solving] [numerics] [special-functions] [parametric-functions]
 
asked by mathemania https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=45858 Score of 5
answered by Roman https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=26598 Score of 1
11.1.1.6 Bathtub vortex simulation with Mathematica FEM

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=309814

Bathtub vortex is well known phenomena that can be simulated with numerical methods like FDM described here and FEM described in our paper here. Let consider bath with 2 inlets and one outlet in a ... 
[finite-element-method] [nonlinear] [finite-difference-method] [fluid-dynamics]
 
asked by Alex Trounev https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=58388 Score of 5
11.1.1.7 Definite Integral doesn't return results

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=309755

MMA cannot integrate this function: 
 Integrate[1/(1 + (x + Tan[x])^2), {x, -Infinity, +Infinity}] // FullSimplify 
 
Neither do a few other sites on the net which ... 
[calculus-and-analysis] [integral-equations]
                                                                                  

                                                                                  
 
asked by Steve237 https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=69429 Score of 4