How can I determine and then plot a confidence bands in QuantilePlot?
How to remove the smallest term from asymptotic expansion?
Solving the following system of integrodifferential equations: speed up of the code
How can I determine and then plot a confidence bands in QuantilePlot?
https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=233931
Does anyone know if its possible to plot a confidence band in QuantilePlot ? I haven't been able to find any documentation for this, or a previous example on here. ... [plotting]
asked by Q.P. https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=27119 3
votes How to remove the smallest term from asymptotic expansion? https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=233823
It is well-known that $e^{-1/x}\sim o(x^n)$ as $x\to 0^+$ for any $n\in\mathbb{N}$, thus if I do an asymptotic expansion for a function, say $f=1/(1-x)+e^{-1/x}$ as $x\to 0^+$, I expect to receive an ... [series-expansion] [asymptotics]
asked by user142288 https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=59534 5
votes Solving the following system of integrodifferential equations: speed up of the code
https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=233726
Consider a system of equations $$ \begin{cases}\frac{\partial f(E,t)}{\partial t}-H[T_{\gamma},f(E,t)]E\frac{\partial f(E,t)}{\partial E} -I[f(E,t),E,T_{\gamma}(t)]=0, \\ \frac{\partial T_{\gamma}}{\... [differential-equations] [equation-solving] [numerics] [syntax] [integral-equations]
asked by John Taylor https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=41058
1 vote