6.16.3 Can you answer these questions?

6.16.3.1 Does MMA have a built-in function or a user-defined function to judge whether the two matrices are congruent
6.16.3.2 Symbolic solution to periodic boundary conditions
6.16.3.3 Collecting terms in NCAlgebra
6.16.3.1 Does MMA have a built-in function or a user-defined function to judge whether the two matrices are congruent

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=227756

It can be seen from the following relationship that matrix A and matrix B must be congruent matrices with each other: 
A = {{1, 4, 4}, {5, 2, 2}, {3, 1, 3}}; 
B = EulerMatrix[{/4, 0,  ... 
[matrix]
 
asked by Ordinary users68 https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=42417 3 votes
6.16.3.2 Symbolic solution to periodic boundary conditions

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=228028

Is it possible to get an analytical solution to the following problem? If so, how? 
$$a w^{(1,0)}(x,t)+b w^{(0,1)}(x,t)=p(x)+g  w(x,t)$$ 
$$I.C.: w(x,0)=0 | B.C.: w(0,t)=w(1,t) | x \in \left[0,  ... 
[differential-equations]
                                                                                  

                                                                                  
 
asked by Scott G https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=74062 1 vote
answered by Michael Seifert https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=27813 0 votes
6.16.3.3 Collecting terms in NCAlgebra

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=227812

Let's say we have GP[v],GM[v]: two noncommutative objects depending on the commutative variable v. 
<< NC`; 
<< NCAlgebra`; 
SetCommutative[v]; 
SetNonCommutative[GP, GM] 
NCCollect[ 
GM[v] **  ... 
[ncalgebra]
 
asked by Kawette https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=60529 1 vote