5.1.1 Top new questions this week

5.1.1.1 What's the default colormap (or color scheme) used in mathematica?
5.1.1.2 $ \frac  \partial^ 2  u  \partial  x ^ 2    + \frac  \partial ^ 2  u  \partial  y ^ 2    =0$ with one boundary at infinity
5.1.1.3 How to make simple closed curve that can be smoothly morphed using locators
5.1.1.4 Approximation with radial basis functions
5.1.1.5 How to Discretize the Following Region Using Reasonable Bounds?
5.1.1.6 Replacement for GraphJoin
5.1.1.7 How can I make a DensityPlot3D over a triangle?
5.1.1.1 What's the default colormap (or color scheme) used in mathematica?

https://mathematica.stackexchange.com/questions/162883/whats-the-default-colormap-or-color-scheme-used-in-mathematica

 
For example, the colors used on this page: 
http://reference.wolfram.com/language/ref/ContourStyle.html 
 
or here: 
https://www.wolfram.com/mathematica/new-in-10/plot-themes/default.html 
 
or here: 
...
 

- asked by Alex (8 votes), answered by kglr (7 votes)

5.1.1.2 $ \frac  \partial^ 2  u  \partial  x ^ 2    + \frac  \partial ^ 2  u  \partial  y ^ 2    =0$ with one boundary at infinity

https://mathematica.stackexchange.com/questions/162691/frac-partial2-u-partial-x2-frac-partial-2-u-partial

 
Is there a trick to make Mathematica solve 
 
$${\frac {\partial^{2}  u}{\partial {x}^{2}}}  +{\frac 
{\partial ^{2} u}{\partial {y}^{2}}} =0$$ with one boundary condition at $\infty$? 
 
Boundary  ...
 

- asked by Nasser (8 votes), answered by ZufolgeWeierstrass (13 votes)

5.1.1.3 How to make simple closed curve that can be smoothly morphed using locators

https://mathematica.stackexchange.com/questions/162711/how-to-make-simple-closed-curve-that-can-be-smoothly-morphed-using-locators

 
Given a simple closed curve in 2D with some locators on it, I would like to have be able to stretch and squish parts of the curve by moving the locators to morph the curve into another simple closed  ...
 

- asked by Michael McCain (8 votes), answered by halirutan (12 votes)

5.1.1.4 Approximation with radial basis functions

https://mathematica.stackexchange.com/questions/162768/approximation-with-radial-basis-functions

 
I want to approximate some functions with basisfunctions, which can be easy Fourier-transformed. So I got the idea to approximate my function with Gaussian normal-distribution curves. This led me to  ...
 

- asked by pcalc (7 votes), answered by Anton Antonov (7 votes)

5.1.1.5 How to Discretize the Following Region Using Reasonable Bounds?

https://mathematica.stackexchange.com/questions/162674/how-to-discretize-the-following-region-using-reasonable-bounds

 
I want to accurately discretize the implicit equation $x^2+x+y^2+\sin(4xy)+\sin(3xy)=3.9$. 
 
To get the whole discretized shape, I'm forced to use oversized bounds {x,-70,80} and {y,-70,80} 
 
curve =  ...
 

- asked by Arbuja (7 votes), answered by Carl Woll (5 votes)

5.1.1.6 Replacement for GraphJoin

https://mathematica.stackexchange.com/questions/162900/replacement-for-graphjoin

 
According to MathWorld >> GraphJoin, Mathematica could compute the join of two graphs with the GraphJoin command, part of Combinatorica.  This command no longer works as of v10, and I cannot find a  ...
 

- asked by Bryan Clair (5 votes), answered by kglr (6 votes)

5.1.1.7 How can I make a DensityPlot3D over a triangle?

https://mathematica.stackexchange.com/questions/162852/how-can-i-make-a-densityplot3d-over-a-triangle

 
I know that I can plot over 3D-regions like balls via 
 
DensityPlot3D[(x^2 + y^2 + z^2)^2, {x, y, z}  Ball[{0, 0, 0}, 1]] 
 
 
But, not surprisingly, this breaks down for 2D-regions like triangles. 
 
How  ...
 

- asked by java4ever (5 votes), answered by rcollyer (7 votes)