4.10 How to find all signum functions in expression and simplify it?

Given

\[ -\frac {\left (\ln \left (\frac {\left (b +\sqrt {b^{2}+y \left (x \right )^{2}}\, \mathrm {signum}\left (b \right )\right ) b}{y \left (x \right )}\right )+\ln \left (2\right )\right ) \mathrm {signum}\left (b \right )}{b} = \mathit {\_C1} +\frac {-\ln \left (a \right )+\ln \left (x \right )-\ln \left (a +\sqrt {a^{2}+x^{2}}\, \mathrm {signum}\left (a \right )\right )-\ln \left (2\right )}{{| a |}} \]

How to find all arguments of signum and simplify the above by assuming they are all positive?

restart; 
expr:=-(ln((b + sqrt(b^2 + y(x)^2)*signum(b))*b/y(x)) + ln(2))*signum(b)/b = _C1 + (-ln(a) + ln(x) - ln(a + sqrt(a^2 + x^2)*signum(a)) - ln(2))/abs(a); 
lis:=indets(expr,'specfunc(anything,signum)'); 
assum:=convert(map(x->op(1,x)>0,lis),list); 
simplify(expr,assume=assum);
 
\[ \frac {-\ln \left (b \right )-\ln \left (\frac {b +\sqrt {b^{2}+y \left (x \right )^{2}}}{y \left (x \right )}\right )-\ln \left (2\right )}{b} = \frac {\mathit {\_C1} a -\ln \left (a \right )-\ln \left (a +\sqrt {a^{2}+x^{2}}\right )+\ln \left (x \right )-\ln \left (2\right )}{a} \]