3.23 How to invert roles of dependent variable and independent variable in an
ode?
Sometimes it is useful to invert an ode. i.e. make the independent variable the dependent
variable, and the dependent variable the independent. For example, given
\[ 1+\left (\frac {x}{y \left (x \right )}-\sin \left (y \left (x \right )\right )\right ) \left (\frac {d}{d x}y \left (x \right )\right ) = 0 \]
We want the
ode to become
\[ -\sin \left (y \right ) y +y \left (\frac {d}{d y}x \left (y \right )\right )+x \left (y \right ) = 0 \]
This can be done as follows
restart;
ode:=1+ (x/y(x)-sin(y(x) ))*diff(y(x),x)=0;
tr:={x=u(t),y(x)=t};
ode:=PDEtools:-dchange(tr,ode);
ode:=eval(ode,[t=y,u=x]);
ode:=simplify(ode);
\[ \frac {-\sin \left (y \right ) y +y \left (\frac {d}{d y}x \left (y \right )\right )+x \left (y \right )}{y \left (\frac {d}{d y}x \left (y \right )\right )} = 0 \]
In this case, we can get rid of the denominator, but this is a manual step for
now.
\[ -\sin \left (y \right ) y +y \left (\frac {d}{d y}x \left (y \right )\right )+x \left (y \right ) = 0 \]
The above can now be solved more easily for \(x(y)\) than solving the original ode for
\(y(x)\).