This is problem 7.15 chapter 4 in Boas:
Given \(x^2 u-y^2 v=1\) and \(x+y=uv\) Find \(\frac {dx}{du},v\) and \(\frac {dx}{du},y\)
This is the maple code to solve this:
restart; eq1:=x^2*u-y^2*v=1; eq2:=x+y=u*v; r1:=D(eq1); r2:=D(eq2); r1_:=subs(D(v)=0,r1); r2_:=subs(D(v)=0,r2); sol:=solve({r1_,r2_},{D(x),D(u)}); print("dx/du,v="); rhs(sol[1])/rhs(sol[2]); r1_:=subs(D(y)=0,r1); r2_:=subs(D(y)=0,r2); sol:=solve({r1_,r2_},{D(x),D(u)}); print("dx/du,y="); rhs(sol[1])/rhs(sol[2]);