1.3.22 Example 22 \(y=xp^{2}-\frac {1}{p}\) (d’Alembert)
\[ x\left ( y^{\prime }\right ) ^{3}=yy^{\prime }+1 \]
Let
\(y^{\prime }=p\) and rearranging gives
\begin{align} xp^{3} & =yp+1\nonumber \\ y & =\frac {xp^{3}-1}{p}\nonumber \\ & =xp^{2}-\frac {1}{p}\nonumber \\ & =xf+g\tag {1}\end{align}
Hence
\begin{align*} f & =p^{2}\\ g & =-\frac {1}{p}\end{align*}
Since \(f\left ( p\right ) \neq p\) then this is d’Alembert ode. Taking derivative of (1) w.r.t. \(x\) gives
\begin{align*} p & =\frac {d}{dx}\left ( xf\left ( p\right ) +g\left ( p\right ) \right ) \\ & =f\left ( p\right ) +xf^{\prime }\left ( p\right ) \frac {dp}{dx}+g^{\prime }\left ( p\right ) \frac {dp}{dx}\\ & =f\left ( p\right ) +\left ( xf^{\prime }+g^{\prime }\right ) \frac {dp}{dx}\end{align*}
But \(f\left ( p\right ) =p^{2},f^{\prime }\left ( p\right ) =2p,g=-\frac {1}{p},g^{\prime }=\frac {1}{p^{2}}\) and the above becomes
\begin{align} p & =p^{2}+\left ( 2xp+\frac {1}{p^{2}}\right ) \frac {dp}{dx}\nonumber \\ p-p^{2} & =\left ( 2xp+\frac {1}{p^{2}}\right ) \frac {dp}{dx}\tag {2}\end{align}
The singular solution is found by setting \(\frac {dp}{dx}=0\) which results in \(p-p^{2}=0\). Hence \(p=0\) or \(p=1\). Substituting \(p=0\) in (1) gives 1/0 error.
Hence this is not valid solution. Substituting \(p=1\) in (1) gives \(y=x-1\) which verifies the ode. Hence this is valid
singular solution.
The general solution is when \(\frac {dp}{dx}\neq 0\) in (2). This gives the ode
\[ \frac {dp}{dx}=\frac {p^{3}\left ( 1-p\right ) }{2xp^{3}+1}\]
But this is non-linear in
\(p\). Hence
inversion is
needed. This becomes
\[ \frac {dx}{dp}=\frac {2xp^{3}+1}{p^{3}\left ( 1-p\right ) }\]
Which is now linear in
\(x\left ( p\right ) \). The solution is
\begin{equation} x=\frac {2c_{1}p^{2}+2p-1}{2p^{2}\left ( p-1\right ) ^{2}} \tag {3}\end{equation}
We now need to eliminate
\(p\). We have two
equations to do that, (1) and (3). Here they are side by side
\begin{align} y & =xp^{2}-\frac {1}{p}\tag {1}\\ x & =\frac {2c_{1}p^{2}+2p-1}{2p^{2}\left ( p-1\right ) ^{2}} \tag {3}\end{align}
We can either solve for \(p\) from (1) and plugin in the value found into (3). Or we can solve for \(p\) from (3) and
plugin the value found in (1). Using CAS we can just use the solve command. For an example, using
Maple it gives
eq1:=y=x*p^2-1/p;
eq2:=x= (2*_C1*p^2+2*p-1)/(2*p^2*(p-1)^2);
solve({eq1,eq2},{y,p})
Whch gives
{p = RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z),
y = (x*RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z)^3 - 1)/RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z)}
Hence the general solution is
\[ y=\frac {x\operatorname {RootOf}\left ( 1+2xZ^{4}-4xZ^{3}+\left ( -2c_{1}+2x\right ) Z^{2}-2Z\right ) ^{3}-1}{\operatorname {RootOf}\left ( 1+2xZ^{4}-4xZ^{3}+\left ( -2c_{1}+2x\right ) Z^{2}-2Z\right ) }\]
And the singular solution is
\[ y=x-1 \]