50.14.22 problem 3(f)

Internal problem ID [8060]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number : 3(f)
Date solved : Sunday, March 30, 2025 at 12:41:48 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=x \ln \left (x \right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 37
ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+4*y(x) = x*ln(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {3}{8}-\frac {{\mathrm e}^{-2 x} \operatorname {Ei}_{1}\left (-2 x \right ) \left (1+x \right )}{4}+\left (c_1 x +c_2 \right ) {\mathrm e}^{-2 x}+\frac {\left (x -1\right ) \ln \left (x \right )}{4} \]
Mathematica. Time used: 0.082 (sec). Leaf size: 52
ode=D[y[x],{x,2}]+4*D[y[x],x]+4*y[x]==x*Log[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{8} e^{-2 x} \left (2 (x+1) \operatorname {ExpIntegralEi}(2 x)-3 e^{2 x}+2 e^{2 x} (x-1) \log (x)+8 c_2 x+8 c_1\right ) \]
Sympy. Time used: 4.819 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*log(x) + 4*y(x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x \log {\left (x \right )}}{4} + \left (C_{1} + x \left (C_{2} + \frac {\operatorname {Ei}{\left (2 x \right )}}{4}\right ) + \frac {\operatorname {Ei}{\left (2 x \right )}}{4}\right ) e^{- 2 x} - \frac {\log {\left (x \right )}}{4} - \frac {3}{8} \]