4.25.8 Problems 701 to 800

Table 4.1107: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

16157

\[ {} y^{\prime \prime }+100 y = 0 \]

16158

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16159

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16160

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16161

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16162

\[ {} y^{\prime \prime }+y^{\prime }-y = 0 \]

16163

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

16164

\[ {} y^{\prime \prime }-y^{\prime }+y = 0 \]

16165

\[ {} y^{\prime \prime }-y^{\prime }-y = 0 \]

16166

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16167

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16168

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16171

\[ {} a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

16172

\[ {} y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

16173

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16174

\[ {} y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

16175

\[ {} y^{\prime \prime }-16 y = 0 \]

16176

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16179

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

16487

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16488

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16489

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16492

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

16493

\[ {} 6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

16494

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16495

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

16496

\[ {} y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

16497

\[ {} 2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16498

\[ {} 15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

16499

\[ {} 20 y^{\prime \prime }+y^{\prime }-y = 0 \]

16500

\[ {} 12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

16518

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16519

\[ {} y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

16520

\[ {} y^{\prime \prime }+16 y = 0 \]

16521

\[ {} y^{\prime \prime }+25 y = 0 \]

16533

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16534

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16552

\[ {} 4 x^{\prime \prime }+9 x = 0 \]

16553

\[ {} 9 x^{\prime \prime }+4 x = 0 \]

16554

\[ {} x^{\prime \prime }+64 x = 0 \]

16555

\[ {} x^{\prime \prime }+100 x = 0 \]

16556

\[ {} x^{\prime \prime }+x = 0 \]

16557

\[ {} x^{\prime \prime }+4 x = 0 \]

16558

\[ {} x^{\prime \prime }+16 x = 0 \]

16559

\[ {} x^{\prime \prime }+256 x = 0 \]

16560

\[ {} x^{\prime \prime }+9 x = 0 \]

16561

\[ {} 10 x^{\prime \prime }+\frac {x}{10} = 0 \]

16562

\[ {} x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

16563

\[ {} \frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

16564

\[ {} \frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

16565

\[ {} 4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

16566

\[ {} x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

16567

\[ {} x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

16589

\[ {} x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

16590

\[ {} x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

16840

\[ {} y^{\prime \prime }+y = 0 \]

16881

\[ {} y^{\prime \prime }-y = 0 \]

16882

\[ {} 3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

16884

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16885

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

16887

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

16889

\[ {} 4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

16892

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16893

\[ {} y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

17099

\[ {} x^{\prime \prime }+x^{\prime }+x = 0 \]

17100

\[ {} x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

17101

\[ {} x^{\prime \prime }+2 x^{\prime }+x = 0 \]

17109

\[ {} y^{\prime \prime }+\lambda y = 0 \]

17110

\[ {} y^{\prime \prime }+\lambda y = 0 \]

17111

\[ {} y^{\prime \prime }-y = 0 \]

17112

\[ {} y^{\prime \prime }+y = 0 \]

17114

\[ {} y^{\prime \prime }+y = 0 \]

17115

\[ {} y^{\prime \prime }-y = 0 \]

17116

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17117

\[ {} y^{\prime \prime }+\alpha y^{\prime } = 0 \]

17120

\[ {} y^{\prime \prime }+\lambda ^{2} y = 0 \]

17121

\[ {} y^{\prime \prime }+\lambda ^{2} y = 0 \]

17217

\[ {} x^{\prime \prime } = 0 \]

17220

\[ {} x^{\prime \prime }+x^{\prime } = 0 \]

17221

\[ {} x^{\prime \prime }+x^{\prime } = 0 \]

17481

\[ {} y^{\prime \prime }+y = 0 \]

17482

\[ {} y^{\prime \prime }+9 y = 0 \]

17483

\[ {} y^{\prime \prime }+y^{\prime }+16 y = 0 \]

17484

\[ {} y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

17485

\[ {} y^{\prime \prime }-y^{\prime }+4 y = 0 \]

17496

\[ {} y^{\prime \prime }+4 y = 0 \]

17497

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

17500

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

17501

\[ {} a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

17512

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

17513

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17514

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

17515

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

17516

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17517

\[ {} y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

17518

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

17519

\[ {} 2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

17520

\[ {} 6 y^{\prime \prime }-y^{\prime }-y = 0 \]

17521

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

17522

\[ {} y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]