4.25.3 Problems 201 to 300

Table 4.1097: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

2558

\[ {} y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

2559

\[ {} 4 y^{\prime \prime }-y^{\prime }+y = 0 \]

2560

\[ {} y^{\prime \prime }+y^{\prime }+2 y = 0 \]

2561

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

2562

\[ {} 2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

2563

\[ {} 3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

2564

\[ {} y^{\prime \prime }+w^{2} y = 0 \]

2567

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

2568

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

2569

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

2570

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

2571

\[ {} 6 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

2572

\[ {} 9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

2835

\[ {} y^{\prime \prime }+\lambda y = 0 \]

2836

\[ {} y^{\prime \prime }+\lambda y = 0 \]

2837

\[ {} y^{\prime \prime }-\lambda y = 0 \]

2838

\[ {} y^{\prime \prime }+\lambda y = 0 \]

2839

\[ {} y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y = 0 \]

2840

\[ {} y^{\prime \prime }+\lambda y = 0 \]

3059

\[ {} y^{\prime \prime }-4 y = 0 \]

3060

\[ {} y^{\prime \prime }+7 y^{\prime }+12 y = 0 \]

3061

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

3062

\[ {} y^{\prime \prime }-7 y^{\prime }+6 y = 0 \]

3063

\[ {} 2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

3064

\[ {} y^{\prime \prime }-2 y^{\prime }-y = 0 \]

3065

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

3066

\[ {} y^{\prime \prime }-3 y^{\prime }+y = 0 \]

3067

\[ {} 2 y^{\prime \prime }+2 y^{\prime }-y = 0 \]

3088

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

3089

\[ {} y^{\prime \prime } = 0 \]

3100

\[ {} y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

3245

\[ {} y^{\prime \prime } = k^{2} y \]

3246

\[ {} x^{\prime \prime }+k^{2} x = 0 \]

3266

\[ {} y^{\prime \prime } = y \]

3282

\[ {} x^{\prime \prime }-k^{2} x = 0 \]

3485

\[ {} f^{\prime \prime }+2 f^{\prime }+5 f = 0 \]

3558

\[ {} y^{\prime \prime }-25 y = 0 \]

3559

\[ {} y^{\prime \prime }+4 y = 0 \]

3560

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

3563

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

3564

\[ {} y^{\prime \prime }-9 y = 0 \]

3570

\[ {} y^{\prime \prime }-\left (a +b \right ) y^{\prime }+b y a = 0 \]

3571

\[ {} y^{\prime \prime }-2 a y^{\prime }+y a^{2} = 0 \]

3572

\[ {} y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0 \]

3573

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

3574

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

3590

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

3696

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

3697

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

3698

\[ {} y^{\prime \prime }-36 y = 0 \]

3699

\[ {} y^{\prime \prime }+4 y^{\prime } = 0 \]

3935

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

3936

\[ {} y^{\prime \prime }+4 y = 0 \]

3955

\[ {} y^{\prime \prime }-y = 0 \]

4118

\[ {} y^{\prime \prime }+8 y^{\prime }+15 y = 0 \]

4119

\[ {} y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

4120

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

4121

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

4122

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

4123

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

4124

\[ {} 2 y^{\prime \prime }+3 y^{\prime } = 0 \]

4125

\[ {} y^{\prime \prime }+25 y = 0 \]

4126

\[ {} 4 y^{\prime \prime }+y^{\prime }+y = 0 \]

4127

\[ {} y^{\prime \prime } = 0 \]

4128

\[ {} y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

4161

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

4163

\[ {} 25 y^{\prime \prime }-30 y^{\prime }+9 y = 0 \]

5916

\[ {} y^{\prime \prime }+2 y^{\prime } = 0 \]

5917

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

5918

\[ {} y^{\prime \prime }-y = 0 \]

5919

\[ {} 6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \]

5920

\[ {} y^{\prime \prime }+2 y^{\prime }-y = 0 \]

5925

\[ {} y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \]

5926

\[ {} y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \]

5928

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

5931

\[ {} y^{\prime \prime }-2 a y^{\prime }+y a^{2} = 0 \]

5937

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

5938

\[ {} y^{\prime \prime }-y^{\prime }+y = 0 \]

5940

\[ {} y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

5945

\[ {} y^{\prime \prime } = 0 \]

5946

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

5947

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

5948

\[ {} y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

6135

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

6136

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6137

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

6138

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

6139

\[ {} y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

6140

\[ {} y^{\prime \prime }+16 y = 0 \]

6141

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

6142

\[ {} y^{\prime \prime }+5 y^{\prime } = 0 \]

6143

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

6144

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 0 \]

6145

\[ {} y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

6146

\[ {} y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

6211

\[ {} r^{\prime \prime }-6 r^{\prime }+9 r = 0 \]

6243

\[ {} y^{\prime \prime } = -4 y \]

6245

\[ {} y^{\prime \prime } = y \]

6247

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

6388

\[ {} x^{\prime \prime }-\omega ^{2} x = 0 \]