Internal
problem
ID
[7495]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
2.
Linear
homogeneous
equations.
Section
2.3.4
problems.
page
104
Problem
number
:
6
Date
solved
:
Sunday, March 30, 2025 at 12:10:42 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=2*x*diff(diff(y(x),x),x)+(x-2)*diff(y(x),x)-y(x) = x^2-1; dsolve(ode,y(x), singsol=all);
ode=2*x*D[y[x],{x,2}]+(x-2)*D[y[x],x]-y[x]==x^2-1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 + 2*x*Derivative(y(x), (x, 2)) + (x - 2)*Derivative(y(x), x) - y(x) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2 - 2*x*Derivative(y(x), (x, 2)) + y(x) - 1)/(x - 2) cannot be solved by the factorable group method