47.4.2 problem 50

Internal problem ID [7479]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 2. Linear homogeneous equations. Section 2.2 problems. page 95
Problem number : 50
Date solved : Sunday, March 30, 2025 at 12:10:10 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)+1/x*diff(y(x),x)-1/x^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \,x^{2}+c_2}{x} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 16
ode=D[y[x],{x,2}]+1/x*D[y[x],x]-1/x^2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_1}{x}+c_2 x \]
Sympy. Time used: 0.187 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 2)) + Derivative(y(x), x)/x - y(x)/x**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x \]