Internal
problem
ID
[7473]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
53
Date
solved
:
Sunday, March 30, 2025 at 12:09:51 PM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=y(x)*(1+(x^2*y(x)^4-1)^(1/2))+2*x*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]*(1+Sqrt[x^2*y[x]^4-1])+2*x*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*Derivative(y(x), x) + (sqrt(x**2*y(x)**4 - 1) + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)