Internal
problem
ID
[7437]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
21
Date
solved
:
Sunday, March 30, 2025 at 12:04:11 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=y(x)+(2*(x*y(x))^(1/2)-x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]+(2*Sqrt[x*y[x]]-x)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x + 2*sqrt(x*y(x)))*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)