Internal
problem
ID
[7302]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
5.
Series
Solutions
of
ODEs.
Special
Functions.
Problem
set
5.1.
page
174
Problem
number
:
18
Date
solved
:
Sunday, March 30, 2025 at 11:53:47 AM
CAS
classification
:
[_Gegenbauer]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(-x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+30*y(x) = 0; ic:=y(0) = 0, D(y)(0) = 15/8; dsolve([ode,ic],y(x),type='series',x=0);
ode=(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+30*y[x]==0; ic={y[0]==0,Derivative[1][y][0] ==1875/1000}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) + 30*y(x),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 15/8} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)