Internal
problem
ID
[7002]
Book
:
A
First
Course
in
Differential
Equations
with
Modeling
Applications
by
Dennis
G.
Zill.
12
ed.
Metric
version.
2024.
Cengage
learning.
Section
:
Chapter
1.
Introduction
to
differential
equations.
Review
problems
at
page
34
Problem
number
:
29
Date
solved
:
Sunday, March 30, 2025 at 11:33:38 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+(x^2-x)*diff(y(x),x)+(1-x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+(x^2-x)*D[y[x],x]+(1-x)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + (1 - x)*y(x) + (x**2 - x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False