4.18.1 Problems 1 to 100

Table 4.885: Second order, non-linear and non-homogeneous

#

ODE

Mathematica

Maple

Sympy

156

\[ {} y^{3} y^{\prime \prime } = 1 \]

232

\[ {} y y^{\prime \prime } = 6 x^{4} \]

1360

\[ {} u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right ) \]

2822

\[ {} z^{\prime \prime }+{\mathrm e}^{z^{2}} = 1 \]

3247

\[ {} y^{3} y^{\prime \prime }+4 = 0 \]

3256

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

3261

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3265

\[ {} y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

3269

\[ {} y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

3277

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3492

\[ {} \frac {y^{\prime \prime }}{y}-\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y} = 2 a^{2} \]

5996

\[ {} y^{3} y^{\prime \prime } = k \]

5997

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

6008

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

6191

\[ {} k = \frac {y^{\prime \prime }}{\left (y^{\prime }+1\right )^{{3}/{2}}} \]

6235

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}+4 = 0 \]

6698

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

6699

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \]

6772

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

6782

\[ {} \left (2 y+x \right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+2 y^{\prime } = 2 \]

7765

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

7824

\[ {} y^{\prime \prime } y^{\prime } = \left (1+x \right ) x \]

7909

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

7915

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

7916

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

8514

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

8523

\[ {} y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]

8524

\[ {} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \]

8527

\[ {} 3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1 \]

8528

\[ {} 4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3 \]

8774

\[ {} y y^{\prime \prime } = 1 \]

8775

\[ {} y y^{\prime \prime } = x \]

8776

\[ {} y^{2} y^{\prime \prime } = x \]

8778

\[ {} 3 y y^{\prime \prime } = \sin \left (x \right ) \]

8779

\[ {} 3 y y^{\prime \prime }+y = 5 \]

8780

\[ {} a y y^{\prime \prime }+b y = c \]

8781

\[ {} a y^{2} y^{\prime \prime }+b y^{2} = c \]

8803

\[ {} y^{\prime \prime }-y y^{\prime } = 2 x \]

8879

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

8880

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

9087

\[ {} {y^{\prime \prime }}^{2}+y^{\prime } = 1 \]

9088

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

9090

\[ {} {y^{\prime \prime }}^{2}+y^{\prime } = x \]

9091

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = x \]

11553

\[ {} y^{\prime \prime }-6 y^{2}-x = 0 \]

11555

\[ {} y^{\prime \prime }+a y^{2}+b x +c = 0 \]

11556

\[ {} y^{\prime \prime }-2 y^{3}-x y+a = 0 \]

11558

\[ {} y^{\prime \prime }-2 a^{2} y^{3}+2 a b x y-b = 0 \]

11559

\[ {} y^{\prime \prime }+d +b x y+c y+a y^{3} = 0 \]

11560

\[ {} y^{\prime \prime }+d +b y^{2}+c y+a y^{3} = 0 \]

11568

\[ {} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta \sin \left (x \right ) = 0 \]

11569

\[ {} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right ) = 0 \]

11578

\[ {} y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{y}-2 a = 0 \]

11585

\[ {} y^{\prime \prime }-3 y y^{\prime }-3 a y^{2}-4 y a^{2}-b = 0 \]

11598

\[ {} y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}}+b \]

11613

\[ {} x y^{\prime \prime }+a \left (x y^{\prime }-y\right )^{2}-b = 0 \]

11618

\[ {} x^{2} y^{\prime \prime }+a \left (x y^{\prime }-y\right )^{2}-b \,x^{2} = 0 \]

11619

\[ {} x^{2} y^{\prime \prime }+a y {y^{\prime }}^{2}+b x = 0 \]

11621

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

11624

\[ {} x^{3} \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )+12 x y+24 = 0 \]

11626

\[ {} 2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 x y\right ) y^{\prime }+b +x y \left (a +3 x y-2 x^{2} y^{2}\right ) = 0 \]

11627

\[ {} 2 \left (-x^{k}+4 x^{3}\right ) \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )-\left (k \,x^{k -1}-12 x^{2}\right ) \left (3 y^{\prime }+y^{2}\right )+a x y+b = 0 \]

11634

\[ {} y y^{\prime \prime }-a = 0 \]

11635

\[ {} y y^{\prime \prime }-a x = 0 \]

11636

\[ {} y y^{\prime \prime }-a \,x^{2} = 0 \]

11637

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}-a = 0 \]

11638

\[ {} y y^{\prime \prime }+y^{2}-a x -b = 0 \]

11640

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

11641

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0 \]

11660

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}-1-2 a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

11665

\[ {} 2 y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

11666

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+a = 0 \]

11667

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{2}+a = 0 \]

11672

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3} = 0 \]

11675

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4} = 0 \]

11681

\[ {} 2 \left (y-a \right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

11682

\[ {} 3 y y^{\prime \prime }-2 {y^{\prime }}^{2}-a \,x^{2}-b x -c = 0 \]

11690

\[ {} a y y^{\prime \prime }+b {y^{\prime }}^{2}+\operatorname {c4} y^{4}+\operatorname {c3} y^{3}+\operatorname {c2} y^{2}+\operatorname {c1} y+\operatorname {c0} = 0 \]

11694

\[ {} x y y^{\prime \prime }+{y^{\prime }}^{2} x +a y y^{\prime }+f \left (x \right ) = 0 \]

11711

\[ {} y^{2} y^{\prime \prime }-a = 0 \]

11712

\[ {} y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}+a x = 0 \]

11713

\[ {} y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}-a x -b = 0 \]

11726

\[ {} x y^{2} y^{\prime \prime }-a = 0 \]

11730

\[ {} y^{3} y^{\prime \prime }-a = 0 \]

11732

\[ {} 2 y^{3} y^{\prime \prime }+y^{4}-a^{2} x y^{2}-1 = 0 \]

11733

\[ {} 2 y^{3} y^{\prime \prime }+y^{2} {y^{\prime }}^{2}-a \,x^{2}-b x -c = 0 \]

11739

\[ {} \sqrt {y}\, y^{\prime \prime }-a = 0 \]

11750

\[ {} \left ({y^{\prime }}^{2}+a \left (x y^{\prime }-y\right )\right ) y^{\prime \prime }-b = 0 \]

11751

\[ {} \left (a \sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }\right ) y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0 \]

11752

\[ {} {y^{\prime \prime }}^{2}-a y-b = 0 \]

11757

\[ {} y {y^{\prime \prime }}^{2}-a \,{\mathrm e}^{2 x} = 0 \]

12232

\[ {} y^{\prime } = y^{2}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )} \]

12322

\[ {} y y^{\prime }-y = a^{2} f^{\prime }\left (x \right ) f^{\prime \prime }\left (x \right )-\frac {\left (f \left (x \right )+b \right )^{2} f^{\prime \prime }\left (x \right )}{{f^{\prime }\left (x \right )}^{3}} \]

12917

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

12921

\[ {} \left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2} \]

12923

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

12941

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

12948

\[ {} x \left (2 y+x \right ) y^{\prime \prime }+2 {y^{\prime }}^{2} x +4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \]

12949

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

13837

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]