4.12.14 Problems 1301 to 1383

Table 4.841: Third and higher order linear ODE

#

ODE

Mathematica

Maple

Sympy

18930

\[ {} y^{\prime \prime \prime } = f \left (x \right ) \]

18956

\[ {} x^{2} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19089

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

19093

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+3 y = 0 \]

19095

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

19096

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 0 \]

19097

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

19098

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

19099

\[ {} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

19100

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

19101

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

19112

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-12 y = \cos \left (4 x \right ) \]

19115

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 = 0 \]

19116

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = x \]

19117

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime } = x^{2}+1 \]

19118

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x \]

19119

\[ {} y^{\prime \prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

19123

\[ {} y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right ) \]

19124

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = a \,x^{2}+b \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

19127

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

19128

\[ {} y^{\prime \prime \prime \prime }-y = x \sin \left (x \right ) \]

19132

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = {\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

19133

\[ {} y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y = \sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x} \]

19134

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = 16 x^{2}+256 \]

19136

\[ {} y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = 96 \sin \left (2 x \right ) \cos \left (x \right ) \]

19137

\[ {} y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

19139

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 24 x \cos \left (x \right ) \]

19246

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0 \]

19247

\[ {} x^{2} y^{\prime \prime \prime }-2 y^{\prime } = 0 \]

19248

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = \ln \left (x \right )^{2} \]

19249

\[ {} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1 \]

19250

\[ {} x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-4 y^{\prime } = 0 \]

19251

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

19253

\[ {} x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = 0 \]

19264

\[ {} x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = x \]

19265

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 4 x \]

19266

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4 \]

19268

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = x^{2}+\frac {1}{x^{2}} \]

19269

\[ {} x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right ) \]

19272

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = x \ln \left (x \right ) \]

19273

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2} \]

19279

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4 \]

19280

\[ {} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

19289

\[ {} x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+y^{\prime } \left (x^{2}+2\right )+3 x y = 2 \]

19290

\[ {} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right ) \]

19291

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x \]

19293

\[ {} y^{\prime \prime \prime } = f \left (x \right ) \]

19298

\[ {} x^{3} y^{\prime \prime \prime } = 1 \]

19300

\[ {} y^{\prime \prime \prime } \csc \left (x \right )^{2} = 1 \]

19313

\[ {} x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4 \]

19318

\[ {} x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

19338

\[ {} a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

19339

\[ {} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19340

\[ {} y^{\left (5\right )}-n^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

19341

\[ {} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19342

\[ {} x^{2} y^{\prime \prime \prime \prime } = \lambda y^{\prime \prime } \]

19343

\[ {} n \,x^{3} y^{\prime \prime \prime } = y-x y^{\prime } \]

19352

\[ {} a y^{\prime \prime \prime } = y^{\prime \prime } \]

19353

\[ {} x^{2} y^{\prime \prime \prime \prime }+1 = 0 \]

19354

\[ {} y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

19363

\[ {} \left (x^{3}-4 x \right ) y^{\prime \prime \prime }+\left (9 x^{2}-4\right ) y^{\prime \prime }+18 x y^{\prime }+6 y = 6 \]

19370

\[ {} y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0 \]

19371

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19459

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

19460

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

19461

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

19463

\[ {} y^{\prime \prime \prime }+y = \left ({\mathrm e}^{x}+1\right )^{2} \]

19465

\[ {} y^{\prime \prime \prime }+a^{2} y^{\prime } = \sin \left (a x \right ) \]

19466

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

19468

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

19507

\[ {} x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-y^{\prime } x^{2}+x y = 1 \]

19509

\[ {} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{2}+3 x \]

19510

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

19511

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

19513

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \]

19515

\[ {} \left (2 x -1\right )^{3} y^{\prime \prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

19517

\[ {} 16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 \left (1+x \right ) y^{\prime }+y = x^{2}+4 x +3 \]

19522

\[ {} \left (x^{2}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y^{\prime } = 0 \]

19523

\[ {} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}} \]

19524

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } \cos \left (x \right )-2 \sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y = \sin \left (2 x \right ) \]

19531

\[ {} y^{\prime \prime \prime } = {\mathrm e}^{x} x \]

19540

\[ {} y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]

19567

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \]