4.12.12 Problems 1101 to 1200

Table 4.837: Third and higher order linear ODE

#

ODE

Mathematica

Maple

Sympy

16936

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

16937

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

16938

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} x \]

16942

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

16943

\[ {} 5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

16944

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

16945

\[ {} 3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

16946

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

16969

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

16970

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

16972

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

16975

\[ {} y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

16976

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

16977

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right ) \]

16983

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = {\mathrm e}^{x}+1 \]

16984

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

16994

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{x} x +\frac {\cos \left (x \right )}{2} \]

16996

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

17012

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}+2 x \]

17014

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

17015

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{2 x}+\sin \left (x \right )+x^{2} \]

17016

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = {\mathrm e}^{x} x -1 \]

17017

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

17032

\[ {} y^{\prime \prime \prime }-y^{\prime } = -2 x \]

17033

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

17034

\[ {} y^{\prime \prime \prime }-y = 2 x \]

17035

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

17052

\[ {} x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

17053

\[ {} x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

17054

\[ {} \left (1+x \right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

17055

\[ {} \left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

17085

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}} \]

17122

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

17123

\[ {} y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]

17125

\[ {} x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]

17126

\[ {} x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \]

17649

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]

17650

\[ {} y^{\prime \prime \prime \prime }-6 y = t \,{\mathrm e}^{-t} \]

17664

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

17665

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

17666

\[ {} y^{\prime \prime \prime \prime }-9 y = 0 \]

17689

\[ {} y^{\prime \prime \prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

17690

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]

17705

\[ {} y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]

17717

\[ {} y^{\prime \prime \prime \prime }-16 y = g \left (t \right ) \]

17718

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = g \left (t \right ) \]

17723

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y = t \]

17724

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right ) \]

17725

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

17726

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right ) \]

17727

\[ {} \left (-4+x \right ) y^{\prime \prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

17728

\[ {} \left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0 \]

17729

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y = 0 \]

17730

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right ) \]

17731

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0 \]

17732

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right ) \]

17733

\[ {} \left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

17734

\[ {} \left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0 \]

17737

\[ {} y^{\prime \prime \prime }+y^{\prime } = 0 \]

17738

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

17739

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }-4 y^{\prime }-16 y = 0 \]

17740

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0 \]

17741

\[ {} x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

17742

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

17899

\[ {} {y^{\prime \prime \prime }}^{2}+x^{2} = 1 \]

17922

\[ {} 2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 x y^{\prime }-12 y = 0 \]

17923

\[ {} y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0 \]

17927

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

17928

\[ {} x y^{\prime \prime \prime }-y^{\prime \prime }+x y^{\prime }-y = 0 \]

17929

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0 \]

17932

\[ {} \left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+y^{\prime } \left (x^{2}+2\right )-2 x y = x^{4}+12 \]

17933

\[ {} y^{\prime \prime \prime }+y^{\prime } = 0 \]

17939

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

17940

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

17941

\[ {} y^{\prime \prime \prime \prime }+4 y = 0 \]

17942

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

17944

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

17947

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} x \]

17948

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = \left (1+x \right ) {\mathrm e}^{x} \]

17959

\[ {} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3}+3 x \]

18031

\[ {} 2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

18286

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

18287

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

18288

\[ {} y^{\prime \prime \prime }-y = 0 \]

18289

\[ {} y^{\prime \prime \prime }+y = 0 \]

18290

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

18291

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

18292

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

18293

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

18294

\[ {} y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

18295

\[ {} y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

18296

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

18297

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

18298

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

18299

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

18300

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

18301

\[ {} y^{\prime \prime \prime \prime } = 0 \]

18302

\[ {} y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

18303

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

18304

\[ {} y^{\prime \prime \prime }-y^{\prime } = 1 \]