4.12.10 Problems 901 to 1000

Table 4.833: Third and higher order linear ODE

#

ODE

Mathematica

Maple

Sympy

15290

\[ {} y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

15291

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

15292

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

15293

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

15294

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

15295

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

15296

\[ {} y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]

15297

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]

15298

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

15299

\[ {} y^{\prime \prime \prime }+216 y = 0 \]

15300

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

15301

\[ {} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

15302

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

15303

\[ {} y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

15304

\[ {} 16 y^{\prime \prime \prime \prime }-y = 0 \]

15305

\[ {} 4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

15306

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

15307

\[ {} y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

15332

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

15333

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

15334

\[ {} x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0 \]

15335

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

15336

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \]

15337

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0 \]

15338

\[ {} x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15339

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

15349

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]

15416

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x} \]

15417

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right ) \]

15418

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x} \]

15419

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x \]

15420

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2} \]

15421

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right ) \]

15422

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x} \]

15423

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \]

15424

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} \sin \left (3 x \right ) \]

15425

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \]

15426

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right ) \]

15427

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right ) \]

15428

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \,{\mathrm e}^{x} \cos \left (x \right ) \]

15429

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x} \]

15458

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = 30 \,{\mathrm e}^{3 x} \]

15459

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

15460

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}} \]

15461

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \tan \left (x \right ) \]

15462

\[ {} y^{\prime \prime \prime \prime }-81 y = \sinh \left (x \right ) \]

15463

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right ) \]

15471

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

15476

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]

15486

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime } = 8 \]

15489

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

15510

\[ {} y^{\prime \prime \prime }+8 y = {\mathrm e}^{-2 x} \]

15511

\[ {} y^{\left (6\right )}-64 y = {\mathrm e}^{-2 x} \]

15526

\[ {} y^{\prime \prime \prime }-27 y = {\mathrm e}^{-3 t} \]

15574

\[ {} y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]

15575

\[ {} y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]

15712

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

15727

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

15728

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

15753

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

15754

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

15768

\[ {} y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]

16296

\[ {} y^{\prime \prime \prime } = 0 \]

16297

\[ {} y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0 \]

16298

\[ {} 8 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

16299

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

16300

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

16301

\[ {} 3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16302

\[ {} 6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16303

\[ {} y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0 \]

16304

\[ {} 5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0 \]

16305

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

16306

\[ {} y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0 \]

16307

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

16308

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0 \]

16309

\[ {} y^{\prime \prime \prime \prime }+7 y^{\prime \prime \prime }+6 y^{\prime \prime }-32 y^{\prime }-32 y = 0 \]

16310

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }+8 y = 0 \]

16311

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime \prime } = 0 \]

16312

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime } = 0 \]

16313

\[ {} y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

16314

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

16315

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

16316

\[ {} y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = 0 \]

16317

\[ {} y^{\left (6\right )}+12 y^{\prime \prime \prime \prime }+48 y^{\prime \prime }+64 y = 0 \]

16318

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

16319

\[ {} y^{\prime \prime \prime }-y = 0 \]

16320

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime } = 0 \]

16321

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

16322

\[ {} 24 y^{\prime \prime \prime }-26 y^{\prime \prime }+9 y^{\prime }-y = 0 \]

16323

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

16324

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

16325

\[ {} 8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime } = 0 \]

16326

\[ {} 2 y^{\left (5\right )}+7 y^{\prime \prime \prime \prime }+17 y^{\prime \prime \prime }+17 y^{\prime \prime }+5 y^{\prime } = 0 \]

16327

\[ {} y^{\left (5\right )}+8 y^{\prime \prime \prime \prime } = 0 \]

16328

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

16329

\[ {} y^{\prime \prime \prime }+9 y^{\prime \prime }+16 y^{\prime }-26 y = 0 \]

16330

\[ {} y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+60 y^{\prime \prime }+124 y^{\prime }+75 y = 0 \]

16331

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]

16332

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y = 0 \]

16333

\[ {} \frac {31 y^{\prime \prime \prime }}{100}+\frac {56 y^{\prime \prime }}{5}-\frac {49 y^{\prime }}{5}+\frac {53 y}{10} = 0 \]