4.12.6 Problems 501 to 600

Table 4.825: Third and higher order linear ODE

#

ODE

Mathematica

Maple

Sympy

7529

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

7530

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right ) \]

7531

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right ) \]

7532

\[ {} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \]

7534

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]

7539

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]

7554

\[ {} a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

7582

\[ {} y^{\prime \prime \prime } = x^{2} \]

7640

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

7641

\[ {} y^{\prime \prime \prime \prime }+16 y = 0 \]

7642

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

7643

\[ {} y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

7644

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

7645

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

7646

\[ {} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

7647

\[ {} y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

7648

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

7649

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]

7652

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

7653

\[ {} y^{\left (5\right )}+2 y = 0 \]

7654

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

7655

\[ {} y^{\prime \prime \prime }+y = 0 \]

7656

\[ {} y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

7658

\[ {} y^{\prime \prime \prime \prime }-k^{4} y = 0 \]

7659

\[ {} y^{\prime \prime \prime }-y = x \]

7660

\[ {} y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x} \]

7661

\[ {} y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right ) \]

7662

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

7663

\[ {} y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) \]

7672

\[ {} y^{\prime \prime \prime } = x^{2}+{\mathrm e}^{-x} \sin \left (x \right ) \]

7673

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

7683

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

7695

\[ {} y^{\prime \prime \prime }-x y = 0 \]

7703

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

7806

\[ {} 2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

7984

\[ {} y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

8016

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

8017

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

8018

\[ {} y^{\prime \prime \prime }-y = 0 \]

8019

\[ {} y^{\prime \prime \prime }+y = 0 \]

8020

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

8021

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

8022

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

8023

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

8024

\[ {} y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

8025

\[ {} y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

8026

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8027

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

8028

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

8029

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

8030

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

8031

\[ {} y^{\prime \prime \prime \prime } = 0 \]

8032

\[ {} y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

8033

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

8034

\[ {} y^{\prime \prime \prime }-y^{\prime } = 1 \]

8035

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

8036

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

8037

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

8038

\[ {} x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

8332

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]

8333

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]

8572

\[ {} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

8615

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

8858

\[ {} y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

8872

\[ {} y^{\prime \prime \prime }+y^{\prime }+y = x \]

8876

\[ {} x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+y^{\prime } x^{2}+x y = 0 \]

8877

\[ {} x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+y^{\prime } x^{2}+x y = x \]

8878

\[ {} 5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+y^{\prime } x^{2}+x y = 0 \]

9165

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{x} x +3 \,{\mathrm e}^{-2 x} \]

9170

\[ {} y^{\prime \prime \prime }-x y = 0 \]

11424

\[ {} y^{\prime \prime \prime }-\lambda y = 0 \]

11425

\[ {} y^{\prime \prime \prime }+y a \,x^{3}-b x = 0 \]

11426

\[ {} y^{\prime \prime \prime }-a \,x^{b} y = 0 \]

11427

\[ {} y^{\prime \prime \prime }+3 y^{\prime }-4 y = 0 \]

11428

\[ {} y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2} = 0 \]

11429

\[ {} y^{\prime \prime \prime }+2 a x y^{\prime }+a y = 0 \]

11430

\[ {} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+\left (a +b -1\right ) x y^{\prime }-b y a = 0 \]

11431

\[ {} y^{\prime \prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y = 0 \]

11432

\[ {} y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y = 0 \]

11433

\[ {} y^{\prime \prime \prime }+2 f \left (x \right ) y^{\prime }+f^{\prime }\left (x \right ) y = 0 \]

11434

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0 \]

11435

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 y a^{2}-\sinh \left (x \right ) = 0 \]

11436

\[ {} y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y-{\mathrm e}^{a x} = 0 \]

11437

\[ {} y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y = 0 \]

11438

\[ {} y^{\prime \prime \prime }-6 x y^{\prime \prime }+2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 a x y = 0 \]

11439

\[ {} y^{\prime \prime \prime }+3 a x y^{\prime \prime }+3 a^{2} x^{2} y^{\prime }+a^{3} x^{3} y = 0 \]

11440

\[ {} y^{\prime \prime \prime }-\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+y \sin \left (x \right )-\ln \left (x \right ) = 0 \]

11441

\[ {} y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime }+f \left (x \right ) y = 0 \]

11442

\[ {} y^{\prime \prime \prime }+f \left (x \right ) \left (x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y\right ) = 0 \]

11443

\[ {} 4 y^{\prime \prime \prime }-8 y^{\prime \prime }-11 y^{\prime }-3 y+18 \,{\mathrm e}^{x} = 0 \]

11444

\[ {} x y^{\prime \prime \prime }+3 y^{\prime \prime }+x y = 0 \]

11445

\[ {} x y^{\prime \prime \prime }+3 y^{\prime \prime }-a \,x^{2} y = 0 \]

11446

\[ {} x y^{\prime \prime \prime }+\left (a +b \right ) y^{\prime \prime }-x y^{\prime }-a y = 0 \]

11447

\[ {} x y^{\prime \prime \prime }-\left (x +2 v \right ) y^{\prime \prime }-\left (x -2 v -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

11448

\[ {} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y-f \left (x \right ) = 0 \]

11449

\[ {} 2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+a x y-b = 0 \]

11450

\[ {} 2 x y^{\prime \prime \prime }-4 \left (x +\nu -1\right ) y^{\prime \prime }+\left (2 x +6 \nu -5\right ) y^{\prime }+\left (1-2 \nu \right ) y = 0 \]

11451

\[ {} 2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y = 0 \]

11452

\[ {} \left (x -2\right ) x y^{\prime \prime \prime }-x \left (x -2\right ) y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

11453

\[ {} \left (2 x -1\right ) y^{\prime \prime \prime }-8 x y^{\prime }+8 y = 0 \]