4.9.49 Problems 4801 to 4900

Table 4.721: First order ode linear in derivative

#

ODE

Mathematica

Maple

Sympy

12313

\[ {} y y^{\prime }-y = -\frac {6 x}{25}+\frac {7 A \,x^{{1}/{3}}}{5}+\frac {31 A^{2}}{3 x^{{1}/{3}}}-\frac {100 A^{4}}{3 x^{{5}/{3}}} \]

12314

\[ {} y y^{\prime }-y = -\frac {10 x}{49}+\frac {13 A^{2}}{5 x^{{1}/{5}}}-\frac {7 A^{3}}{20 x^{{4}/{5}}} \]

12315

\[ {} y y^{\prime }-y = -\frac {33 x}{169}+\frac {286 A^{2}}{3 x^{{5}/{11}}}-\frac {770 A^{3}}{9 x^{{13}/{11}}} \]

12316

\[ {} y y^{\prime }-y = -\frac {21 x}{100}+\frac {7 A^{2} \left (\frac {123}{x^{{1}/{7}}}+\frac {280 A}{x^{{5}/{7}}}-\frac {400 A^{2}}{x^{{9}/{7}}}\right )}{9} \]

12317

\[ {} y y^{\prime }-y = a x +b \,x^{m} \]

12318

\[ {} y y^{\prime }-y = -\frac {\left (1+m \right ) x}{\left (m +2\right )^{2}}+A \,x^{2 m +1}+B \,x^{3 m +1} \]

12319

\[ {} y y^{\prime }-y = a^{2} \lambda \,{\mathrm e}^{2 \lambda x}-a \left (\lambda b +1\right ) {\mathrm e}^{\lambda x}+b \]

12320

\[ {} y y^{\prime }-y = a^{2} \lambda \,{\mathrm e}^{2 \lambda x}+a \lambda x \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\lambda x} \]

12321

\[ {} y y^{\prime }-y = 2 a^{2} \lambda \sin \left (2 \lambda x \right )+2 \sin \left (\lambda x \right ) a \]

12323

\[ {} y y^{\prime } = \left (a x +b \right ) y+1 \]

12324

\[ {} y y^{\prime } = \frac {y}{\left (a x +b \right )^{2}}+1 \]

12325

\[ {} y y^{\prime } = \left (a -\frac {1}{a x}\right ) y+1 \]

12326

\[ {} y y^{\prime } = \frac {y}{\sqrt {a x +b}}+1 \]

12327

\[ {} y y^{\prime } = \frac {3 y}{\sqrt {a \,x^{{3}/{2}}+8 x}}+1 \]

12328

\[ {} y y^{\prime } = \left (\frac {a}{x^{{2}/{3}}}-\frac {2}{3 a \,x^{{1}/{3}}}\right ) y+1 \]

12329

\[ {} y y^{\prime } = a \,{\mathrm e}^{\lambda x} y+1 \]

12330

\[ {} y y^{\prime } = \left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{-\lambda x}\right ) y+1 \]

12331

\[ {} y y^{\prime } = a y \cosh \left (x \right )+1 \]

12332

\[ {} y y^{\prime } = a y \sinh \left (x \right )+1 \]

12333

\[ {} y y^{\prime } = a \cos \left (\lambda x \right ) y+1 \]

12334

\[ {} y y^{\prime } = a \sin \left (\lambda x \right ) y+1 \]

12335

\[ {} y y^{\prime } = \left (a x +3 b \right ) y+c \,x^{3}-a b \,x^{2}-2 b^{2} x \]

12336

\[ {} y y^{\prime } = \left (3 a x +b \right ) y-a^{2} x^{3}-a b \,x^{2}+c x \]

12337

\[ {} 2 y y^{\prime } = \left (7 a x +5 b \right ) y-3 a^{2} x^{3}-2 c \,x^{2}-3 b^{2} x \]

12338

\[ {} y y^{\prime } = \left (\left (3-m \right ) x -1\right ) y-\left (m -1\right ) a x \]

12339

\[ {} y y^{\prime }+x \left (a \,x^{2}+b \right ) y+x = 0 \]

12340

\[ {} y y^{\prime }+a \left (1-\frac {1}{x}\right ) y = a^{2} \]

12341

\[ {} y y^{\prime }-a \left (1-\frac {b}{x}\right ) y = a^{2} b \]

12342

\[ {} y y^{\prime } = x^{n -1} \left (\left (2 n +1\right ) x +a n \right ) y-n \,x^{2 n} \left (x +a \right ) \]

12343

\[ {} y y^{\prime } = a \left (-n b +x \right ) x^{n -1} y+c \left (x^{2}-\left (2 n +1\right ) b x +n \left (n +1\right ) b^{2}\right ) x^{2 n -1} \]

12344

\[ {} y y^{\prime } = \left (a \left (2 n +k \right ) x^{k}+b \right ) x^{n -1} y+\left (-a^{2} n \,x^{2 k}-a b \,x^{k}+c \right ) x^{2 n -1} \]

12345

\[ {} y y^{\prime } = \left (a \left (2 n +k \right ) x^{2 k}+b \left (2 m -k \right )\right ) x^{m -k -1} y-\frac {a^{2} m \,x^{4 k}+c \,x^{2 k}+b^{2} m}{x} \]

12346

\[ {} y y^{\prime } = \frac {\left (\left (m +2 L -3\right ) x +n -2 L +3\right ) y}{x}+\left (\left (m -L -1\right ) x^{2}+\left (n -m -2 L +3\right ) x -n +L -2\right ) x^{1-2 L} \]

12347

\[ {} y y^{\prime } = \left (a \left (2 n +1\right ) x^{2}+c x +b \left (2 n -1\right )\right ) x^{n -2} y-\left (n \,a^{2} x^{4}+a c \,x^{3}+n \,b^{2}+b x c +d \,x^{2}\right ) x^{2 n -3} \]

12348

\[ {} y y^{\prime } = \left (a \left (n -1\right ) x +b \left (2 \lambda +n \right )\right ) x^{\lambda -1} \left (a x +b \right )^{-\lambda -2} y-\left (a n x +b \left (\lambda +n \right )\right ) x^{2 \lambda -1} \left (a x +b \right )^{-2 \lambda -3} \]

12349

\[ {} y y^{\prime }-\frac {a \left (\left (m -1\right ) x +1\right ) y}{x} = \frac {a^{2} \left (m x +1\right ) \left (x -1\right )}{x} \]

12350

\[ {} y y^{\prime }-a \left (1-\frac {b}{\sqrt {x}}\right ) y = \frac {a^{2} b}{\sqrt {x}} \]

12351

\[ {} y y^{\prime } = \frac {3 y}{\left (a x +b \right )^{{1}/{3}} x^{{5}/{3}}}+\frac {3}{\left (a x +b \right )^{{2}/{3}} x^{{7}/{3}}} \]

12352

\[ {} 3 y y^{\prime } = \frac {\left (-7 \lambda s \left (3 s +4 \lambda \right ) x +6 s -2 \lambda \right ) y}{x^{{1}/{3}}}+\frac {6 \lambda s x -6}{x^{{2}/{3}}}+2 \left (\lambda s \left (3 s +4 \lambda \right ) x +5 \lambda \right ) \left (-\lambda s \left (3 s +4 \lambda \right ) x +3 s +4 \lambda \right ) x^{{1}/{3}} \]

12353

\[ {} y y^{\prime }+\frac {a \left (6 x -1\right ) y}{2 x} = -\frac {a^{2} \left (x -1\right ) \left (4 x -1\right )}{2 x} \]

12354

\[ {} y y^{\prime }-\frac {a \left (1+\frac {2 b}{x^{2}}\right ) y}{2} = \frac {a^{2} \left (3 x +\frac {4 b}{x}\right )}{16} \]

12355

\[ {} y y^{\prime }+\frac {a \left (13 x -20\right ) y}{14 x^{{9}/{7}}} = -\frac {3 a^{2} \left (x -1\right ) \left (x -8\right )}{14 x^{{11}/{17}}} \]

12356

\[ {} y y^{\prime }+\frac {5 a \left (23 x -16\right ) y}{56 x^{{9}/{7}}} = -\frac {3 a^{2} \left (x -1\right ) \left (25 x -32\right )}{56 x^{{11}/{17}}} \]

12357

\[ {} y y^{\prime }+\frac {a \left (19 x +85\right ) y}{26 x^{{18}/{13}}} = -\frac {3 a^{2} \left (x -1\right ) \left (x +25\right )}{26 x^{{23}/{13}}} \]

12358

\[ {} y y^{\prime }+\frac {a \left (13 x -18\right ) y}{15 x^{{7}/{5}}} = -\frac {4 a^{2} \left (x -1\right ) \left (x -6\right )}{15 x^{{9}/{5}}} \]

12359

\[ {} y y^{\prime }+\frac {a \left (5 x +1\right ) y}{2 \sqrt {x}} = a^{2} \left (-x^{2}+1\right ) \]

12360

\[ {} y y^{\prime }+\frac {3 a \left (19 x -14\right ) x^{{7}/{5}} y}{35} = -\frac {4 a^{2} \left (x -1\right ) \left (9 x -14\right ) x^{{9}/{5}}}{35} \]

12361

\[ {} y y^{\prime }+\frac {3 a \left (3 x +7\right ) y}{10 x^{{13}/{10}}} = -\frac {a^{2} \left (x -1\right ) \left (9+x \right )}{5 x^{{8}/{5}}} \]

12362

\[ {} y y^{\prime }+\frac {a \left (7 x -12\right ) y}{10 x^{{7}/{5}}} = -\frac {a^{2} \left (x -1\right ) \left (x -16\right )}{10 x^{{9}/{5}}} \]

12363

\[ {} y y^{\prime }+\frac {3 a \left (13 x -8\right ) y}{20 x^{{7}/{5}}} = -\frac {a^{2} \left (x -1\right ) \left (27 x -32\right )}{20 x^{{9}/{5}}} \]

12364

\[ {} y y^{\prime }+\frac {3 a \left (3 x +11\right ) y}{14 x^{{10}/{7}}} = -\frac {a^{2} \left (x -1\right ) \left (x -27\right )}{14 x^{{13}/{7}}} \]

12365

\[ {} y y^{\prime }-\frac {a \left (1+x \right ) y}{2 x^{{7}/{4}}} = \frac {a^{2} \left (x -1\right ) \left (5+3 x \right )}{4 x^{{5}/{2}}} \]

12366

\[ {} y y^{\prime }-\frac {a \left (1+x \right ) y}{2 x^{{7}/{4}}} = \frac {a^{2} \left (x -1\right ) \left (x +5\right )}{4 x^{{5}/{2}}} \]

12367

\[ {} y y^{\prime }-\frac {a \left (4 x +3\right ) y}{14 x^{{8}/{7}}} = -\frac {a^{2} \left (x -1\right ) \left (16 x +5\right )}{14 x^{{9}/{7}}} \]

12368

\[ {} y y^{\prime }+\frac {a \left (13 x -3\right ) y}{6 x^{{2}/{3}}} = -\frac {a^{2} \left (x -1\right ) \left (5 x -1\right )}{6 x^{{1}/{3}}} \]

12369

\[ {} y y^{\prime }-\frac {a \left (8 x -1\right ) y}{28 x^{{8}/{7}}} = \frac {a^{2} \left (x -1\right ) \left (32 x +3\right )}{28 x^{{9}/{7}}} \]

12370

\[ {} y y^{\prime }-\frac {a \left (5 x -4\right ) y}{x^{4}} = \frac {a^{2} \left (x -1\right ) \left (3 x -1\right )}{x^{7}} \]

12371

\[ {} y y^{\prime }-\frac {2 a \left (3 x -10\right ) y}{5 x^{4}} = \frac {a^{2} \left (x -1\right ) \left (8 x -5\right )}{5 x^{7}} \]

12372

\[ {} y y^{\prime }+\frac {a \left (39 x -4\right ) y}{42 x^{{9}/{7}}} = -\frac {a^{2} \left (x -1\right ) \left (9 x -1\right )}{42 x^{{11}/{7}}} \]

12373

\[ {} y y^{\prime }+\frac {a \left (x -2\right ) y}{x} = \frac {2 a^{2} \left (x -1\right )}{x} \]

12374

\[ {} y y^{\prime }+\frac {a \left (3 x -2\right ) y}{x} = -\frac {2 a^{2} \left (x -1\right )^{2}}{x} \]

12375

\[ {} y y^{\prime }+\frac {a \left (1-\frac {b}{x^{2}}\right ) y}{x} = \frac {a^{2} b}{x} \]

12376

\[ {} y y^{\prime }-\frac {a \left (3 x -4\right ) y}{4 x^{{5}/{2}}} = \frac {a^{2} \left (x -1\right ) \left (x +2\right )}{4 x^{4}} \]

12377

\[ {} y y^{\prime }+\frac {a \left (33 x +2\right ) y}{30 x^{{6}/{5}}} = -\frac {a^{2} \left (x -1\right ) \left (9 x -4\right )}{30 x^{{7}/{5}}} \]

12378

\[ {} y y^{\prime }-\frac {a \left (x -8\right ) y}{8 x^{{5}/{2}}} = -\frac {a^{2} \left (x -1\right ) \left (3 x -4\right )}{8 x^{4}} \]

12379

\[ {} y y^{\prime }+\frac {a \left (17 x +18\right ) y}{30 x^{{22}/{15}}} = -\frac {a^{2} \left (x -1\right ) \left (x +4\right )}{30 x^{{29}/{15}}} \]

12380

\[ {} y y^{\prime }-\frac {a \left (6 x -13\right ) y}{13 x^{{5}/{2}}} = -\frac {a^{2} \left (x -1\right ) \left (x -13\right )}{26 x^{4}} \]

12381

\[ {} y y^{\prime }+\frac {a \left (24 x +11\right ) x^{{27}/{20}} y}{30} = -\frac {a^{2} \left (x -1\right ) \left (9 x +1\right )}{60 x^{{17}/{10}}} \]

12382

\[ {} y y^{\prime }-\frac {2 a \left (3 x +2\right ) y}{5 x^{{8}/{5}}} = \frac {a^{2} \left (x -1\right ) \left (1+8 x \right )}{5 x^{{11}/{5}}} \]

12383

\[ {} y y^{\prime }-\frac {6 a \left (1+4 x \right ) y}{5 x^{{7}/{5}}} = \frac {a^{2} \left (x -1\right ) \left (27 x +8\right )}{5 x^{{9}/{5}}} \]

12384

\[ {} y y^{\prime }-\frac {a \left (x +4\right ) y}{5 x^{{8}/{5}}} = \frac {a^{2} \left (x -1\right ) \left (3 x +7\right )}{5 x^{{3}/{5}}} \]

12385

\[ {} y y^{\prime }-\frac {a \left (x +4\right ) y}{5 x^{{8}/{5}}} = \frac {a^{2} \left (x -1\right ) \left (3 x +7\right )}{5 x^{{11}/{5}}} \]

12386

\[ {} y y^{\prime }-\frac {a \left (2 x -1\right ) y}{x^{{5}/{2}}} = \frac {a^{2} \left (x -1\right ) \left (3 x +1\right )}{2 x^{4}} \]

12387

\[ {} y y^{\prime }+\frac {a \left (x -6\right ) y}{5 x^{{7}/{5}}} = \frac {2 a^{2} \left (x -1\right ) \left (x +4\right )}{5 x^{{9}/{5}}} \]

12388

\[ {} y y^{\prime }+\frac {a \left (21 x +19\right ) y}{5 x^{{7}/{5}}} = -\frac {2 a^{2} \left (x -1\right ) \left (9 x -4\right )}{5 x^{{9}/{5}}} \]

12389

\[ {} y y^{\prime }-\frac {3 a y}{x^{{7}/{4}}} = \frac {a^{2} \left (x -1\right ) \left (x -9\right )}{4 x^{{5}/{2}}} \]

12390

\[ {} y y^{\prime }-\frac {a \left (\left (k +1\right ) x -1\right ) y}{x^{2}} = \frac {a^{2} \left (k +1\right ) \left (x -1\right )}{x^{2}} \]

12391

\[ {} y y^{\prime }-a \left (\left (k -2\right ) x +2 k -3\right ) x^{-k} y = a^{2} \left (k -2\right ) \left (x -1\right )^{2} x^{1-2 k} \]

12392

\[ {} y y^{\prime }-\frac {a \left (\left (4 k -7\right ) x -4 k +5\right ) x^{-k} y}{2} = \frac {a^{2} \left (2 k -3\right ) \left (x -1\right )^{2} x^{1-2 k}}{2} \]

12393

\[ {} y y^{\prime }-\left (\left (2 n -1\right ) x -a n \right ) x^{-n -1} y = n \left (x -a \right ) x^{-2 n} \]

12394

\[ {} y y^{\prime }-\left (\left (n +1\right ) x -a n \right ) x^{n -1} \left (x -a \right )^{-n -2} y = n \,x^{2 n} \left (x -a \right )^{-2 n -3} \]

12395

\[ {} y y^{\prime }-a \left (\left (2 k -3\right ) x +1\right ) x^{-k} y = a^{2} \left (k -2\right ) \left (\left (k -1\right ) x +1\right ) x^{2-2 k} \]

12396

\[ {} y y^{\prime }-a \left (\left (n +2 k -3\right ) x +3-2 k \right ) x^{-k} y = a^{2} \left (\left (n +k -1\right ) x^{2}-\left (n +2 k -3\right ) x +k -2\right ) x^{1-2 k} \]

12397

\[ {} y y^{\prime }-\frac {a \left (\left (n +2\right ) x -2\right ) x^{-\frac {2 n +1}{n}} y}{n} = \frac {a^{2} \left (\left (n +1\right ) x^{2}-2 x -n +1\right ) x^{-\frac {3 n +2}{n}}}{n} \]

12398

\[ {} y y^{\prime }-\frac {a \left (\frac {\left (n +4\right ) x}{n +2}-2\right ) x^{-\frac {2 n +1}{n}} y}{n} = \frac {a^{2} \left (2 x^{2}+\left (n^{2}+n -4\right ) x -\left (n -1\right ) \left (n +2\right )\right ) x^{-\frac {3 n +2}{n}}}{n \left (n +2\right )} \]

12399

\[ {} y y^{\prime }+\frac {a \left (\frac {\left (3 n +5\right ) x}{2}+\frac {n -1}{n +1}\right ) x^{-\frac {n +4}{3+n}} y}{3+n} = -\frac {a^{2} \left (\left (n +1\right ) x^{2}-\frac {\left (n^{2}+2 n +5\right ) x}{n +1}+\frac {4}{n +1}\right ) x^{-\frac {n +5}{3+n}}}{6+2 n} \]

12400

\[ {} y y^{\prime }-a \left (\frac {n +2}{n}+b \,x^{n}\right ) y = -\frac {a^{2} x \left (\frac {n +1}{n}+b \,x^{n}\right )}{n} \]

12401

\[ {} y y^{\prime } = \left (a \,{\mathrm e}^{x}+b \right ) y+c \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}-b^{2} \]

12402

\[ {} y y^{\prime } = \left (a \left (2 \mu +\lambda \right ) {\mathrm e}^{\lambda x}+b \right ) {\mathrm e}^{x \mu } y+\left (-a^{2} \mu \,{\mathrm e}^{2 \lambda x}-a b \,{\mathrm e}^{\lambda x}+c \right ) {\mathrm e}^{2 x \mu } \]

12403

\[ {} y y^{\prime } = \left ({\mathrm e}^{\lambda x} a +b \right ) y+c \left (a^{2} {\mathrm e}^{2 \lambda x}+a b \left (\lambda x +1\right ) {\mathrm e}^{\lambda x}+b^{2} \lambda x \right ) \]

12404

\[ {} y y^{\prime } = {\mathrm e}^{\lambda x} \left (2 a \lambda x +a +b \right ) y-{\mathrm e}^{2 \lambda x} \left (a^{2} \lambda \,x^{2}+a b x +c \right ) \]

12405

\[ {} y y^{\prime } = {\mathrm e}^{a x} \left (2 a \,x^{2}+b +2 x \right ) y+{\mathrm e}^{2 a x} \left (-a \,x^{4}-b \,x^{2}+c \right ) \]

12406

\[ {} y y^{\prime }+a \left (2 b x +1\right ) {\mathrm e}^{b x} y = -a^{2} b \,x^{2} {\mathrm e}^{2 b x} \]

12407

\[ {} y y^{\prime }-a \left (1+2 n +2 n \left (n +1\right ) x \right ) {\mathrm e}^{\left (n +1\right ) x} y = -a^{2} n \left (n +1\right ) \left (n x +1\right ) x \,{\mathrm e}^{2 \left (n +1\right ) x} \]

12408

\[ {} y y^{\prime }+a \left (1+2 b \sqrt {x}\right ) {\mathrm e}^{2 b \sqrt {x}} y = -a^{2} b \,x^{{3}/{2}} {\mathrm e}^{4 b \sqrt {x}} \]

12409

\[ {} y y^{\prime } = \left (a \cosh \left (x \right )+b \right ) y-a b \sinh \left (x \right )+c \]

12410

\[ {} y y^{\prime } = \left (a \sinh \left (x \right )+b \right ) y-a b \cosh \left (x \right )+c \]

12411

\[ {} y y^{\prime } = \left (2 \ln \left (x \right )+a +1\right ) y+x \left (-\ln \left (x \right )^{2}-a \ln \left (x \right )+b \right ) \]

12412

\[ {} y y^{\prime } = \left (2 \ln \left (x \right )^{2}+2 \ln \left (x \right )+a \right ) y+x \left (-\ln \left (x \right )^{4}-a \ln \left (x \right )^{2}+b \right ) \]

12413

\[ {} y y^{\prime } = a x \cos \left (\lambda \,x^{2}\right ) y+x \]