29.34.15 problem 1017

Internal problem ID [5586]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 34
Problem number : 1017
Date solved : Sunday, March 30, 2025 at 09:05:04 AM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} {y^{\prime }}^{3}+x -y&=0 \end{align*}

Maple. Time used: 0.035 (sec). Leaf size: 211
ode:=diff(y(x),x)^3+x-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} x -\frac {3 \left (y-x \right )^{{2}/{3}}}{2}-3 \left (y-x \right )^{{1}/{3}}-3 \ln \left (\left (y-x \right )^{{1}/{3}}-1\right )-c_1 &= 0 \\ x +\frac {3 \left (y-x \right )^{{2}/{3}}}{4}-\frac {3 i \sqrt {3}\, \left (y-x \right )^{{2}/{3}}}{4}+\frac {3 \left (y-x \right )^{{1}/{3}}}{2}+\frac {3 i \sqrt {3}\, \left (y-x \right )^{{1}/{3}}}{2}+6 \ln \left (2\right )-3 \ln \left (-4-2 i \sqrt {3}\, \left (y-x \right )^{{1}/{3}}-2 \left (y-x \right )^{{1}/{3}}\right )-c_1 &= 0 \\ x +\frac {3 \left (y-x \right )^{{2}/{3}}}{4}+\frac {3 i \sqrt {3}\, \left (y-x \right )^{{2}/{3}}}{4}+\frac {3 \left (y-x \right )^{{1}/{3}}}{2}-\frac {3 i \sqrt {3}\, \left (y-x \right )^{{1}/{3}}}{2}+6 \ln \left (2\right )-3 \ln \left (2 i \sqrt {3}\, \left (y-x \right )^{{1}/{3}}-2 \left (y-x \right )^{{1}/{3}}-4\right )-c_1 &= 0 \\ \end{align*}
Mathematica. Time used: 6.771 (sec). Leaf size: 271
ode=(D[y[x],x])^3 +x-y[x]==0 x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {3}{2} (y(x)-x)^{2/3}+3 \sqrt [3]{y(x)-x}+3 \log \left (\sqrt [3]{y(x)-x}-1\right )-x&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {1}{4} i \left (-12 i \arctan \left (\frac {2 \sqrt [3]{y(x)-x}+1}{\sqrt {3}}\right )-3 i \left (\sqrt {3}-i\right ) (y(x)-x)^{2/3}+6 i \left (\sqrt {3}+i\right ) \sqrt [3]{y(x)-x}+6 \log \left ((y(x)-x)^{2/3}+\sqrt [3]{y(x)-x}+1\right )-4 x\right )&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {y(x)}{2}+\frac {1}{4} \left (2 (x-y(x))+\frac {3}{2} \left (1-i \sqrt {3}\right ) (y(x)-x)^{2/3}+3 \left (1+i \sqrt {3}\right ) \sqrt [3]{y(x)-x}-6 \log \left (2 i \sqrt [3]{y(x)-x}+\sqrt {2+2 i \sqrt {3}}\right )\right )&=c_1,y(x)\right ] \\ \end{align*}
Sympy. Time used: 38.313 (sec). Leaf size: 209
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x - y(x) + Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ C_{1} + x - \frac {3 \left (- x + y{\left (x \right )}\right )^{\frac {2}{3}}}{2} - 3 \sqrt [3]{- x + y{\left (x \right )}} - 3 \log {\left (1 - \sqrt [3]{- x + y{\left (x \right )}} \right )} = 0, \ C_{1} + x + \frac {3 \left (1 - \sqrt {3} i\right ) \left (- x + y{\left (x \right )}\right )^{\frac {2}{3}}}{4} + \frac {3 \sqrt [3]{- x + y{\left (x \right )}}}{2} + \frac {3 \sqrt {3} i \sqrt [3]{- x + y{\left (x \right )}}}{2} - 3 \log {\left (\sqrt {3} \sqrt [3]{- x + y{\left (x \right )}} - i \sqrt [3]{- x + y{\left (x \right )}} - 2 i \right )} = 0, \ C_{1} + x + \frac {3 \left (1 + \sqrt {3} i\right ) \left (- x + y{\left (x \right )}\right )^{\frac {2}{3}}}{4} + \frac {3 \sqrt [3]{- x + y{\left (x \right )}}}{2} - \frac {3 \sqrt {3} i \sqrt [3]{- x + y{\left (x \right )}}}{2} - 3 \log {\left (\sqrt {3} \sqrt [3]{- x + y{\left (x \right )}} + i \sqrt [3]{- x + y{\left (x \right )}} + 2 i \right )} = 0\right ] \]