29.31.8 problem 907

Internal problem ID [5487]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 31
Problem number : 907
Date solved : Sunday, March 30, 2025 at 08:18:28 AM
CAS classification : [_separable]

\begin{align*} x^{2} {y^{\prime }}^{2}+4 x y^{\prime } y-5 y^{2}&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=x^2*diff(y(x),x)^2+4*x*diff(y(x),x)*y(x)-5*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= c_1 x \\ y &= \frac {c_1}{x^{5}} \\ \end{align*}
Mathematica. Time used: 0.05 (sec). Leaf size: 24
ode=x^2 (D[y[x],x])^2+4 x y[x] D[y[x],x]-5 y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {c_1}{x^5} \\ y(x)\to c_1 x \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.171 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x)**2 + 4*x*y(x)*Derivative(y(x), x) - 5*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} x, \ y{\left (x \right )} = \frac {C_{1}}{x^{5}}\right ] \]