Internal
problem
ID
[5480]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
31
Problem
number
:
900
Date
solved
:
Sunday, March 30, 2025 at 08:16:57 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]
ode:=x^2*diff(y(x),x)^2-(1+2*x*y(x))*diff(y(x),x)+1+y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=x^2 (D[y[x],x])^2-(1+2 x y[x])D[y[x],x]+1+y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x)**2 - (2*x*y(x) + 1)*Derivative(y(x), x) + y(x)**2 + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out