29.30.35 problem 895

Internal problem ID [5475]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 30
Problem number : 895
Date solved : Sunday, March 30, 2025 at 08:15:26 AM
CAS classification : [_separable]

\begin{align*} x^{2} {y^{\prime }}^{2}+y^{2}-y^{4}&=0 \end{align*}

Maple. Time used: 0.051 (sec). Leaf size: 52
ode:=x^2*diff(y(x),x)^2+y(x)^2-y(x)^4 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -1 \\ y &= 1 \\ y &= 0 \\ y &= \operatorname {csgn}\left (\sec \left (-\ln \left (x \right )+c_1 \right )\right ) \csc \left (-\ln \left (x \right )+c_1 \right ) \\ y &= -\operatorname {csgn}\left (\sec \left (-\ln \left (x \right )+c_1 \right )\right ) \csc \left (-\ln \left (x \right )+c_1 \right ) \\ \end{align*}
Mathematica. Time used: 1.478 (sec). Leaf size: 88
ode=x^2 (D[y[x],x])^2+y[x]^2-y[x]^4==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {\sec ^2(-\log (x)+c_1)} \\ y(x)\to \sqrt {\sec ^2(-\log (x)+c_1)} \\ y(x)\to -\sqrt {\sec ^2(\log (x)+c_1)} \\ y(x)\to \sqrt {\sec ^2(\log (x)+c_1)} \\ y(x)\to -1 \\ y(x)\to 0 \\ y(x)\to 1 \\ \end{align*}
Sympy. Time used: 0.879 (sec). Leaf size: 54
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x)**2 - y(x)**4 + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \begin {cases} i \operatorname {acosh}{\left (\frac {1}{y{\left (x \right )}} \right )} & \text {for}\: \frac {1}{\left |{y^{2}{\left (x \right )}}\right |} > 1 \\- \operatorname {asin}{\left (\frac {1}{y{\left (x \right )}} \right )} & \text {otherwise} \end {cases} = C_{1} - \log {\left (x \right )}, \ \begin {cases} i \operatorname {acosh}{\left (\frac {1}{y{\left (x \right )}} \right )} & \text {for}\: \frac {1}{\left |{y^{2}{\left (x \right )}}\right |} > 1 \\- \operatorname {asin}{\left (\frac {1}{y{\left (x \right )}} \right )} & \text {otherwise} \end {cases} = C_{1} + \log {\left (x \right )}\right ] \]