29.30.29 problem 889

Internal problem ID [5469]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 30
Problem number : 889
Date solved : Sunday, March 30, 2025 at 08:15:06 AM
CAS classification : [_quadrature]

\begin{align*} 4 \left (2-x \right ) {y^{\prime }}^{2}+1&=0 \end{align*}

Maple. Time used: 0.034 (sec). Leaf size: 23
ode:=4*(2-x)*diff(y(x),x)^2+1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\sqrt {x -2}+c_1 \\ y &= \sqrt {x -2}+c_1 \\ \end{align*}
Mathematica. Time used: 0.009 (sec). Leaf size: 31
ode=4(2-x) (D[y[x],x])^2+1==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {x-2}+c_1 \\ y(x)\to \sqrt {x-2}+c_1 \\ \end{align*}
Sympy. Time used: 0.325 (sec). Leaf size: 48
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((8 - 4*x)*Derivative(y(x), x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - x \sqrt {\frac {1}{x - 2}} + 2 \sqrt {\frac {1}{x - 2}}, \ y{\left (x \right )} = C_{1} + x \sqrt {\frac {1}{x - 2}} - 2 \sqrt {\frac {1}{x - 2}}\right ] \]