|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} x^{2}+3 x y^{\prime } = y^{3}+2 y
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +y = x y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x +y\right ) y^{\prime }+x = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = \sqrt {x y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {2 x -y}{x +4 y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = \sqrt {-y^{2}+x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime }+x = 2 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime }-y+\sqrt {y^{2}-x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2}+y^{2} = x y y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = 2 \sqrt {x y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +y+\left (x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (x^{2}+x y+y^{2}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2}+y^{2} = 2 x y y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {\mathrm e}^{\frac {y}{x}} x +y = x y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \frac {x +y}{x -y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x +y-\left (x -y+2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +\left (x -2 y+2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x -y+1+\left (x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x -y+2+\left (x +y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x -y+\left (y-x +1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {x +y-1}{x -y-1}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x -y+1+\left (x -y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +2 y+2 = \left (2 x +y-1\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 6 x -3 y+6+\left (2 x -y+5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x +3 y+2+\left (y-x \right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✓ |
|
|
\[
{} x +y+4 = \left (2 x +2 y-1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x -y+2+\left (x +2 y+1\right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✓ |
|
|
\[
{} 3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x -2 y+3+\left (1-x +2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} 2 x +y+\left (4 x -2 y+1\right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x +y+\left (-2 y+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x +y+\left (3 y+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (6 x y+5\right )+\left (2 x^{3}+3 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 x^{2} y+x y^{2}+{\mathrm e}^{x}+\left (x^{3}+x^{2} y+\sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x y-\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cos \left (x \right ) y-2 \sin \left (y\right ) = \left (2 x \cos \left (y\right )-\sin \left (x \right )\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {2 x y-1}{y}+\frac {\left (3 y+x \right ) y^{\prime }}{y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y \,{\mathrm e}^{x}-2 x +{\mathrm e}^{x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y \sin \left (x \right )-\cos \left (y\right )+\left (x \sin \left (y\right )-3 \cos \left (x \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {x y+1}{y}+\frac {\left (2 y-x \right ) y^{\prime }}{y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {y \left (2+x^{3} y\right )}{x^{3}} = \frac {\left (1-2 x^{3} y\right ) y^{\prime }}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2} \csc \left (x \right )^{2}+6 x y-2 = \left (2 \cot \left (x \right ) y-3 x^{2}\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y \sin \left (x y\right )+\left (2 x \sin \left (x y\right )+y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {x \cos \left (\frac {x}{y}\right )}{y}+\sin \left (\frac {x}{y}\right )+\cos \left (x \right )-\frac {x^{2} \cos \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y \,{\mathrm e}^{x y}+2 x y+\left (x \,{\mathrm e}^{x y}+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {-y^{2}+x^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (2 y^{2}+x^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {2 x^{2}}{x^{2}+y^{2}}+\ln \left (x^{2}+y^{2}\right )+\frac {2 x y y^{\prime }}{x^{2}+y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime }+\ln \left (x \right )-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y+\left (y+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x -2 x y\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y+y^{2}+x^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{3}-1+x^{2} y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (y^{3} x^{3}-1\right ) y^{\prime }+x^{2} y^{4} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -x \sqrt {-y^{2}+x^{2}}\right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x y+\left (y-x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y = x \left (x^{2} y-1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {\mathrm e}^{x} y^{\prime } = 2 x y^{2}+y \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+y^{2}+x \right ) y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{2} y y^{\prime }+x^{4} {\mathrm e}^{x}-2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y \left (1-x^{4} y^{2}\right )+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{2}-y+\left (2 x^{3} y+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+y^{2}-2 y\right ) y^{\prime } = 2 x
\]
|
✓ |
✗ |
✓ |
|
|
\[
{} y-x^{2} \sqrt {-y^{2}+x^{2}}-x y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y \left (x +y^{2}\right )+x \left (x -y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} x y^{\prime }+2 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-x y = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y = 2 x \,{\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y+3 x^{2} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime }+x = {\mathrm e}^{-y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y x^{\prime }+\left (1+y \right ) x = {\mathrm e}^{y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+\left (2 x -3 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime }-2 x^{4}-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 1 = \left (x +{\mathrm e}^{y}\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x = 1
\]
|
✓ |
✓ |
✓ |
|