|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = -y-\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y-\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x -y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y-x +1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x -y+1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x^{2}-y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x^{2}-y-2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 2 x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x \ln \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y^{{1}/{3}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = y^{{1}/{3}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime } = x -1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime } = x -1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \ln \left (1+y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = -y^{2}+x^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+x \right ) y^{\prime } = 4 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 3 \sqrt {x y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 4 \left (x y\right )^{{1}/{3}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = 2 x \sec \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime } = 2 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime } = \left (1+y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime } = x \left (1+y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1+x +y+x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } x^{2} = 1-x^{2}+y^{2}-x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 3 x^{2} \left (1+y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 4 x^{3} y-y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+1 = 2 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \tan \left (x \right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = 2 x^{2} y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 2 x y^{2}+3 x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 6 \,{\mathrm e}^{2 x -y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = 2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-2 x y = {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+2 y = 3 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }+y = 10 \sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }+y = 10 \sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x y^{\prime }+y = 12 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }-3 y = 9 x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = 3 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+3 y = 2 x^{5}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-3 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \left (1-y\right ) \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+x \right ) y^{\prime }+y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = 2 y+\cos \left (x \right ) x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\cot \left (x \right ) y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1+x +y+x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = 3 y+x^{4} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 2 x y+3 x^{2} {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+\left (2 x -3\right ) y = 4 x^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+4\right ) y^{\prime }+3 x y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime }+3 x^{3} y = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x +y\right ) y^{\prime } = x -y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = y+2 \sqrt {x y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -y\right ) y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \left (x +y\right ) y^{\prime } = y \left (x -y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (2 y+x \right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{2} y^{\prime } = x^{3}+y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } x^{2} = x y+x^{2} {\mathrm e}^{\frac {y}{x}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } x^{2} = x y+y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y y^{\prime } = x^{2}+3 y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-y^{2}+x^{2}\right ) y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y y^{\prime } = y^{2}+x \sqrt {4 x^{2}+y^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime } = y+\sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime }+x = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \sqrt {x +y+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \left (4 x +y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } x^{2}+2 x y = 5 y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2} y^{\prime }+2 x y^{3} = 6 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y+y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } x^{2}+2 x y = 5 y^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+6 y = 3 x y^{{4}/{3}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }+y^{3} {\mathrm e}^{-2 x} = 2 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2} \left (x y^{\prime }+y\right ) \sqrt {x^{4}+1} = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x y^{2} y^{\prime } = 3 x^{4}+y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \,{\mathrm e}^{y} y^{\prime } = 2 \,{\mathrm e}^{y}+2 x^{3} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 4 x^{2}+\sin \left (y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x +{\mathrm e}^{y}\right ) y^{\prime } = x \,{\mathrm e}^{-y}-1
\]
|
✓ |
✓ |
✓ |
|