29.24.19 problem 681
Internal
problem
ID
[5272]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
24
Problem
number
:
681
Date
solved
:
Sunday, March 30, 2025 at 07:39:06 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
\begin{align*} \left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right )&=0 \end{align*}
✓ Maple. Time used: 0.093 (sec). Leaf size: 119
ode:=(3*x^2+y(x)^2)*y(x)*diff(y(x),x)+x*(x^2+3*y(x)^2) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= \frac {\sqrt {-3 c_1 \,x^{2}-\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\
y &= \frac {\sqrt {-3 c_1 \,x^{2}+\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\
y &= -\frac {\sqrt {-3 c_1 \,x^{2}-\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\
y &= -\frac {\sqrt {-3 c_1 \,x^{2}+\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\
\end{align*}
✓ Mathematica. Time used: 8.414 (sec). Leaf size: 245
ode=(3*x^2+y[x]^2)*y[x]*D[y[x],x]+x*(x^2+3*y[x]^2)==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to -\sqrt {-3 x^2-\sqrt {8 x^4+e^{4 c_1}}} \\
y(x)\to \sqrt {-3 x^2-\sqrt {8 x^4+e^{4 c_1}}} \\
y(x)\to -\sqrt {-3 x^2+\sqrt {8 x^4+e^{4 c_1}}} \\
y(x)\to \sqrt {-3 x^2+\sqrt {8 x^4+e^{4 c_1}}} \\
y(x)\to -\sqrt {-2 \sqrt {2} \sqrt {x^4}-3 x^2} \\
y(x)\to \sqrt {-2 \sqrt {2} \sqrt {x^4}-3 x^2} \\
y(x)\to -\sqrt {2 \sqrt {2} \sqrt {x^4}-3 x^2} \\
y(x)\to \sqrt {2 \sqrt {2} \sqrt {x^4}-3 x^2} \\
\end{align*}
✓ Sympy. Time used: 4.216 (sec). Leaf size: 88
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(x*(x**2 + 3*y(x)**2) + (3*x**2 + y(x)**2)*y(x)*Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ y{\left (x \right )} = - \sqrt {- 3 x^{2} - \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = \sqrt {- 3 x^{2} - \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = - \sqrt {- 3 x^{2} + \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = \sqrt {- 3 x^{2} + \sqrt {C_{1} + 8 x^{4}}}\right ]
\]