29.24.19 problem 681

Internal problem ID [5272]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 24
Problem number : 681
Date solved : Sunday, March 30, 2025 at 07:39:06 AM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} \left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right )&=0 \end{align*}

Maple. Time used: 0.093 (sec). Leaf size: 119
ode:=(3*x^2+y(x)^2)*y(x)*diff(y(x),x)+x*(x^2+3*y(x)^2) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {-3 c_1 \,x^{2}-\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\ y &= \frac {\sqrt {-3 c_1 \,x^{2}+\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\ y &= -\frac {\sqrt {-3 c_1 \,x^{2}-\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\ y &= -\frac {\sqrt {-3 c_1 \,x^{2}+\sqrt {8 x^{4} c_1^{2}+1}}}{\sqrt {c_1}} \\ \end{align*}
Mathematica. Time used: 8.414 (sec). Leaf size: 245
ode=(3*x^2+y[x]^2)*y[x]*D[y[x],x]+x*(x^2+3*y[x]^2)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {-3 x^2-\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to \sqrt {-3 x^2-\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to -\sqrt {-3 x^2+\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to \sqrt {-3 x^2+\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to -\sqrt {-2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ y(x)\to \sqrt {-2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ y(x)\to -\sqrt {2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ y(x)\to \sqrt {2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ \end{align*}
Sympy. Time used: 4.216 (sec). Leaf size: 88
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x**2 + 3*y(x)**2) + (3*x**2 + y(x)**2)*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {- 3 x^{2} - \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = \sqrt {- 3 x^{2} - \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = - \sqrt {- 3 x^{2} + \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = \sqrt {- 3 x^{2} + \sqrt {C_{1} + 8 x^{4}}}\right ] \]