Internal
problem
ID
[5234]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
23
Problem
number
:
643
Date
solved
:
Sunday, March 30, 2025 at 07:06:12 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*(2*x^2+y(x)^2)*diff(y(x),x) = (2*x^2+3*y(x)^2)*y(x); dsolve(ode,y(x), singsol=all);
ode=x(2 x^2+y[x]^2)D[y[x],x]==(2 x^2+3 y[x]^2)y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(2*x**2 + y(x)**2)*Derivative(y(x), x) - (2*x**2 + 3*y(x)**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)