Internal
problem
ID
[4799]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
7
Problem
number
:
199
Date
solved
:
Sunday, March 30, 2025 at 03:58:22 AM
CAS
classification
:
[`y=_G(x,y')`]
ode:=x*diff(y(x),x)+(sin(y(x))-3*x^2*cos(y(x)))*cos(y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=x D[y[x],x]+(Sin[y[x]]-3 x^2 Cos[y[x]]) Cos[y[x]]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + (-3*x**2*cos(y(x)) + sin(y(x)))*cos(y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (3*x**2*cos(2*y(x)) + 3*x**2 - sin(2*y(x)))/(2*x) cannot be solved by the factorable group method