4.3.40 Problems 3901 to 4000

Table 4.363: Second order ode

#

ODE

Mathematica

Maple

Sympy

12688

\[ {} y^{\prime \prime }+a \left (\lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{2 \lambda x}\right ) y = 0 \]

12689

\[ {} y^{\prime \prime }-\left (a^{2} {\mathrm e}^{2 x}+a \left (2 b +1\right ) {\mathrm e}^{x}+b^{2}\right ) y = 0 \]

12690

\[ {} y^{\prime \prime }-\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+c \right ) y = 0 \]

12691

\[ {} y^{\prime \prime }+\left (a \,{\mathrm e}^{4 \lambda x}+b \,{\mathrm e}^{3 \lambda x}+c \,{\mathrm e}^{2 \lambda x}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

12692

\[ {} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

12693

\[ {} y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

12694

\[ {} y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

12695

\[ {} y^{\prime \prime }+a y^{\prime }+\left (b \,{\mathrm e}^{\lambda x}+c \right ) y = 0 \]

12696

\[ {} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{3 \lambda x}+b \,{\mathrm e}^{2 \lambda x}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

12697

\[ {} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

12698

\[ {} y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left ({\mathrm e}^{\lambda x} a +\lambda \right ) y = 0 \]

12699

\[ {} y^{\prime \prime }+\left (a +b \right ) {\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\lambda x}+\lambda \right ) y = 0 \]

12700

\[ {} y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y^{\prime }-b \,{\mathrm e}^{x \mu } \left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }+\mu \right ) y = 0 \]

12701

\[ {} y^{\prime \prime }+2 k \,{\mathrm e}^{x \mu } y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 x \mu }+k \mu \,{\mathrm e}^{x \mu }+c \right ) y = 0 \]

12702

\[ {} y^{\prime \prime }-\left (a +2 b \,{\mathrm e}^{a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{2 a x} y = 0 \]

12703

\[ {} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x}+\lambda \right ) y^{\prime }-a \lambda \,{\mathrm e}^{2 \lambda x} y = 0 \]

12704

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+b \,{\mathrm e}^{2 \lambda x} y = 0 \]

12705

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \right ) y^{\prime }+c \left ({\mathrm e}^{\lambda x} a +b -c \right ) y = 0 \]

12706

\[ {} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{2 \lambda x}\right ) y^{\prime }+\lambda \left (a -\lambda -b \,{\mathrm e}^{2 \lambda x}\right ) y = 0 \]

12707

\[ {} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{\lambda x}+b -3 \lambda \right ) y^{\prime }+a^{2} \lambda \left (b -\lambda \right ) {\mathrm e}^{2 \lambda x} y = 0 \]

12708

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+c \,{\mathrm e}^{x \mu }\right ) y = 0 \]

12709

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a +b \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a \left (b +\lambda \right ) {\mathrm e}^{\lambda x}+c \right ) y = 0 \]

12710

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +2 b -\lambda \right ) y^{\prime }+\left (c \,{\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+b^{2}-\lambda b \right ) y = 0 \]

12711

\[ {} y^{\prime \prime }+\left (a \,{\mathrm e}^{x}+b \right ) y^{\prime }+\left (c \left (a -c \right ) {\mathrm e}^{2 x}+\left (a k +b c -2 c k +c \right ) {\mathrm e}^{x}+k \left (b -k \right )\right ) y = 0 \]

12712

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \right ) y^{\prime }+\left (\alpha \,{\mathrm e}^{2 \lambda x}+\beta \,{\mathrm e}^{\lambda x}+\gamma \right ) y = 0 \]

12713

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{2 x \mu }+c \,{\mathrm e}^{x \mu }+k \right ) y = 0 \]

12714

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a +b -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 x \mu }+d \,{\mathrm e}^{x \mu }+k \right ) y = 0 \]

12715

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }\right ) y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{x \mu }+\lambda \right ) y = 0 \]

12716

\[ {} y^{\prime \prime }+{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{2 x \mu }+b \right ) y^{\prime }+\mu \left ({\mathrm e}^{\lambda x} \left (b -a \,{\mathrm e}^{2 x \mu }\right )-\mu \right ) y = 0 \]

12717

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+b \mu \,{\mathrm e}^{x \mu }\right ) y = 0 \]

12718

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }+c \right ) y^{\prime }+\left (a b \,{\mathrm e}^{x \left (\lambda +\mu \right )}+{\mathrm e}^{\lambda x} a c +b \mu \,{\mathrm e}^{x \mu }\right ) y = 0 \]

12719

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +2 b \,{\mathrm e}^{x \mu }-\lambda \right ) y^{\prime }+\left (a b \,{\mathrm e}^{x \left (\lambda +\mu \right )}+c \,{\mathrm e}^{2 \lambda x}+b^{2} {\mathrm e}^{2 x \mu }+b \left (\mu -\lambda \right ) {\mathrm e}^{x \mu }\right ) y = 0 \]

12720

\[ {} y^{\prime \prime }+\left (a \,{\mathrm e}^{x \left (\lambda +\mu \right )}+a \lambda \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{x \mu }-2 \lambda \right ) y^{\prime }+a^{2} b \lambda \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} y = 0 \]

12721

\[ {} y^{\prime \prime }+a \,{\mathrm e}^{b \,x^{n}} y^{\prime }+c \left (a \,{\mathrm e}^{b \,x^{n}}-c \right ) y = 0 \]

12722

\[ {} \left ({\mathrm e}^{\lambda x} a +b \right ) y^{\prime \prime }-a \,\lambda ^{2} {\mathrm e}^{\lambda x} y = 0 \]

12723

\[ {} \left (a^{2} {\mathrm e}^{2 \lambda x}+b \right ) y^{\prime \prime }-b \lambda y^{\prime }-a^{2} \lambda ^{2} k^{2} {\mathrm e}^{2 \lambda x} y = 0 \]

12724

\[ {} 2 \left ({\mathrm e}^{\lambda x} a +b \right ) y^{\prime \prime }+a \lambda \,{\mathrm e}^{\lambda x} y^{\prime }+c y = 0 \]

12725

\[ {} \left ({\mathrm e}^{\lambda x} a +b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+k \left (\left (-a k +c \right ) {\mathrm e}^{\lambda x}+d -b k \right ) y = 0 \]

12726

\[ {} \left ({\mathrm e}^{\lambda x} a +b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+\left (n \,{\mathrm e}^{\lambda x}+m \right ) y = 0 \]

12848

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

12849

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

12859

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}} \]

12861

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

12862

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

12864

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

12866

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

12867

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \]

12868

\[ {} y^{\prime \prime }+4 y = x^{2}+\cos \left (x \right ) \]

12869

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2} \]

12870

\[ {} y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x \]

12871

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \]

12875

\[ {} y^{\prime \prime }-2 y^{\prime } = 1+{\mathrm e}^{2 x} \]

12879

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

12880

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-\left (1+x \right ) y^{\prime }+6 y = x \]

12881

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = \cos \left (x \right )-{\mathrm e}^{2 x} \]

12883

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 2 x^{3}-x \,{\mathrm e}^{3 x} \]

12888

\[ {} y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

12889

\[ {} y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

12891

\[ {} y^{\prime \prime }+y = x \cos \left (x \right ) \]

12894

\[ {} y^{\prime \prime }-y^{\prime } x^{2}+x y = x \]

12895

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1 \]

12896

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

12897

\[ {} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

12898

\[ {} \sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 y \sin \left (x \right ) = {\mathrm e}^{x} \]

12899

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

12900

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

12901

\[ {} x y^{\prime \prime }+2 y^{\prime }-x y = 2 \,{\mathrm e}^{x} \]

12902

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+y \,{\mathrm e}^{2 x} = {\mathrm e}^{4 x} \]

12903

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

12904

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

12905

\[ {} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

12906

\[ {} x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}} \]

12907

\[ {} x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

12908

\[ {} \left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

12909

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

12910

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

12911

\[ {} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

12912

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

12913

\[ {} \left (2 x^{3}-1\right ) y^{\prime \prime }-6 y^{\prime } x^{2}+6 x y = 0 \]

12914

\[ {} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

12915

\[ {} x^{2} y^{\prime \prime }-2 n x \left (1+x \right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

12916

\[ {} x^{4} y^{\prime \prime }+2 x^{3} \left (1+x \right ) y^{\prime }+n^{2} y = 0 \]

12917

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

12919

\[ {} y^{\prime \prime }+x y^{\prime } = x \]

12920

\[ {} y^{\prime \prime } = {\mathrm e}^{x} x \]

12921

\[ {} \left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2} \]

12922

\[ {} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

12923

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

12924

\[ {} 2 y^{\prime \prime } = {\mathrm e}^{y} \]

12925

\[ {} y y^{\prime \prime }+2 y^{\prime }-{y^{\prime }}^{2} = 0 \]

12929

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x \]

12930

\[ {} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

12933

\[ {} x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0 \]

12934

\[ {} x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0 \]

12936

\[ {} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

12937

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

12938

\[ {} x^{3} y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0 \]

12939

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )-x^{2} y^{2} \]

12940

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0 \]

12941

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]