4.2.53 Problems 5201 to 5300

Table 4.273: Second order linear ODE

#

ODE

Mathematica

Maple

Sympy

17630

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

17631

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right ) \]

17632

\[ {} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = g \left (x \right ) \]

17633

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

17634

\[ {} t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

17635

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

17636

\[ {} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

17637

\[ {} t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

17638

\[ {} y^{\prime \prime }+y = g \left (t \right ) \]

17639

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }-y = {\mathrm e}^{2 t} t^{2} \]

17640

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

17641

\[ {} y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

17642

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

17643

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17644

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

17645

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = t^{2} {\mathrm e}^{t}+7 \]

17646

\[ {} y^{\prime \prime }-5 y^{\prime }-6 y = t^{2}+7 \]

17647

\[ {} y^{\prime \prime }+4 y = 3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \]

17648

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = t \cos \left (2 t \right ) \]

17651

\[ {} y^{\prime \prime }+16 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17652

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

17653

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]

17654

\[ {} y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

17655

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = t \]

17656

\[ {} y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

17657

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

17658

\[ {} y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

17659

\[ {} y^{\prime \prime }+4 y^{\prime }+29 y = {\mathrm e}^{-2 t} \sin \left (5 t \right ) \]

17660

\[ {} y^{\prime \prime }+w^{2} y = \cos \left (2 t \right ) \]

17661

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = \cos \left (t \right ) \]

17662

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]

17663

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 18 \,{\mathrm e}^{-t} \]

17678

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]

17679

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \]

17680

\[ {} y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]

17681

\[ {} y^{\prime \prime }+4 y = \sin \left (t \right )-\sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]

17682

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \]

17683

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \operatorname {Heaviside}\left (t -2\right ) \]

17684

\[ {} y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -3 \pi \right ) \]

17685

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]

17686

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right . \]

17687

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17688

\[ {} y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]

17691

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )}{2} \]

17692

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \]

17693

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = 2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \]

17694

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]

17695

\[ {} y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

17696

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right ) \]

17697

\[ {} y^{\prime \prime }-y = -20 \delta \left (t -3\right ) \]

17698

\[ {} y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]

17699

\[ {} y^{\prime \prime }+4 y = \delta \left (t -4 \pi \right ) \]

17700

\[ {} y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]

17701

\[ {} y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]

17702

\[ {} y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )+3 \delta \left (t -\frac {3 \pi }{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]

17703

\[ {} 2 y^{\prime \prime }+y^{\prime }+6 y = \delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \]

17704

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]

17706

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]

17707

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]

17708

\[ {} y^{\prime \prime }+y = \delta \left (t -1\right ) \]

17709

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y = k \delta \left (t -1\right ) \]

17710

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{10}+y = k \delta \left (t -1\right ) \]

17711

\[ {} y^{\prime \prime }+w^{2} y = g \left (t \right ) \]

17712

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = \sin \left (\alpha t \right ) \]

17713

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+17 y = g \left (t \right ) \]

17714

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]

17715

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = g \left (t \right ) \]

17716

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (\alpha t \right ) \]

17719

\[ {} \frac {7 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]

17720

\[ {} \frac {8 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]

17822

\[ {} y^{\prime \prime } = \sin \left (x \right ) \]

17924

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

17925

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

17926

\[ {} \sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

17930

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 2 x^{3} \]

17931

\[ {} y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x} = x -1 \]

17934

\[ {} y^{\prime \prime }+y = 0 \]

17935

\[ {} y^{\prime \prime }+\frac {y}{x^{2} \ln \left (x \right )} = {\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \]

17936

\[ {} y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y = 0 \]

17937

\[ {} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

17938

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }+\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y \]

17943

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 0 \]

17945

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

17946

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} \]

17949

\[ {} y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

17950

\[ {} y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

17951

\[ {} y^{\prime \prime }-y = \frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}} \]

17952

\[ {} y^{\prime \prime }-2 y = 4 x^{2} {\mathrm e}^{x^{2}} \]

17953

\[ {} y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right ) \]

17954

\[ {} y^{\prime \prime }+9 y = \ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \]

17955

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}} = 0 \]

17956

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

17957

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

17958

\[ {} x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

17960

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

17961

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1-\frac {m^{2}}{x^{2}}\right ) y = 0 \]

17962

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

17963

\[ {} y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y = 0 \]

17964

\[ {} x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

17965

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]