12.14.50 problem 61

Internal problem ID [1991]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number : 61
Date solved : Saturday, March 29, 2025 at 11:45:10 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.019 (sec). Leaf size: 40
Order:=6; 
ode:=2*x^2*(1+x)*diff(diff(y(x),x),x)-x*(1-3*x)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (-x^{5}+x^{4}-x^{3}+x^{2}-x +1\right ) \left (c_1 \sqrt {x}+c_2 x \right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.006 (sec). Leaf size: 58
ode=2*x^2*(1+x)*D[y[x],{x,2}]-x*(1-3*x)*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 x \left (-x^5+x^4-x^3+x^2-x+1\right )+c_2 \sqrt {x} \left (-x^5+x^4-x^3+x^2-x+1\right ) \]
Sympy. Time used: 0.897 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*(x + 1)*Derivative(y(x), (x, 2)) - x*(1 - 3*x)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} x + C_{1} \sqrt {x} + O\left (x^{6}\right ) \]