12.14.4 problem 1

Internal problem ID [1945]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number : 1
Date solved : Saturday, March 29, 2025 at 11:43:51 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (5 x^{2}+3 x +3\right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.025 (sec). Leaf size: 317
Order:=6; 
ode:=2*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+x*(5*x^2+3*x+3)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_2 \,x^{\frac {i \sqrt {7}}{4}} \left (1+\frac {1}{2+i \sqrt {7}} x +\frac {1}{4} \frac {-i \sqrt {7}+11}{\left (2+i \sqrt {7}\right ) \left (i \sqrt {7}+4\right )} x^{2}-\frac {1}{12} \frac {49 i \sqrt {7}+89}{\left (2+i \sqrt {7}\right ) \left (i \sqrt {7}+4\right ) \left (i \sqrt {7}+6\right )} x^{3}+\frac {1}{48} \frac {395 i \sqrt {7}-1553}{\left (2+i \sqrt {7}\right ) \left (i \sqrt {7}+4\right ) \left (i \sqrt {7}+6\right ) \left (i \sqrt {7}+8\right )} x^{4}+\frac {1}{240} \frac {42423 i \sqrt {7}+45275}{\left (2+i \sqrt {7}\right ) \left (i \sqrt {7}+4\right ) \left (i \sqrt {7}+6\right ) \left (i \sqrt {7}+8\right ) \left (i \sqrt {7}+10\right )} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_1 \,x^{-\frac {i \sqrt {7}}{4}} \left (1+\frac {1}{2-i \sqrt {7}} x +\frac {-i \sqrt {7}-11}{-4+24 i \sqrt {7}} x^{2}+\frac {49 \sqrt {7}+89 i}{432 i-444 \sqrt {7}} x^{3}-\frac {1}{48} \frac {395 i \sqrt {7}+1553}{\left (\sqrt {7}+2 i\right ) \left (\sqrt {7}+4 i\right ) \left (\sqrt {7}+6 i\right ) \left (\sqrt {7}+8 i\right )} x^{4}+\frac {-42423 \sqrt {7}-45275 i}{1749600 i-492720 \sqrt {7}} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{x^{{1}/{4}}} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 4838
ode=2*x^2*(1+x+x^2)*D[y[x],{x,2}]+x*(3+3*x+5*x^2)*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*(x**2 + x + 1)*Derivative(y(x), (x, 2)) + x*(5*x**2 + 3*x + 3)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : Expected Expr or iterable but got None