10.6.19 problem 19

Internal problem ID [1236]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Miscellaneous problems, end of chapter 2. Page 133
Problem number : 19
Date solved : Saturday, March 29, 2025 at 10:49:27 PM
CAS classification : [_rational]

\begin{align*} y^{\prime }&=\frac {3 x^{2}-2 y-y^{3}}{2 x +3 x y^{2}} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 405
ode:=diff(y(x),x) = (3*x^2-2*y(x)-y(x)^3)/(2*x+3*x*y(x)^2); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {12^{{1}/{3}} \left (x^{2} 12^{{1}/{3}}-\frac {{\left (\left (9 x^{3}+\sqrt {3}\, \sqrt {27 x^{6}-54 c_1 \,x^{3}+27 c_1^{2}+32 x^{2}}-9 c_1 \right ) x^{2}\right )}^{{2}/{3}}}{2}\right )}{3 {\left (\left (9 x^{3}+\sqrt {3}\, \sqrt {27 x^{6}-54 c_1 \,x^{3}+27 c_1^{2}+32 x^{2}}-9 c_1 \right ) x^{2}\right )}^{{1}/{3}} x} \\ y &= -\frac {2^{{2}/{3}} 3^{{1}/{3}} \left (2 i 2^{{2}/{3}} 3^{{5}/{6}} x^{2}-2 x^{2} 2^{{2}/{3}} 3^{{1}/{3}}+i {\left (\left (9 x^{3}+\sqrt {3}\, \sqrt {27 x^{6}-54 c_1 \,x^{3}+27 c_1^{2}+32 x^{2}}-9 c_1 \right ) x^{2}\right )}^{{2}/{3}} \sqrt {3}+{\left (\left (9 x^{3}+\sqrt {3}\, \sqrt {27 x^{6}-54 c_1 \,x^{3}+27 c_1^{2}+32 x^{2}}-9 c_1 \right ) x^{2}\right )}^{{2}/{3}}\right )}{12 x {\left (\left (9 x^{3}+\sqrt {3}\, \sqrt {27 x^{6}-54 c_1 \,x^{3}+27 c_1^{2}+32 x^{2}}-9 c_1 \right ) x^{2}\right )}^{{1}/{3}}} \\ y &= \frac {\left (2 x^{2} 2^{{2}/{3}} \left (i 3^{{5}/{6}}+3^{{1}/{3}}\right )+\left (i \sqrt {3}-1\right ) {\left (\left (9 x^{3}+\sqrt {3}\, \sqrt {27 x^{6}-54 c_1 \,x^{3}+27 c_1^{2}+32 x^{2}}-9 c_1 \right ) x^{2}\right )}^{{2}/{3}}\right ) 2^{{2}/{3}} 3^{{1}/{3}}}{12 {\left (\left (9 x^{3}+\sqrt {3}\, \sqrt {27 x^{6}-54 c_1 \,x^{3}+27 c_1^{2}+32 x^{2}}-9 c_1 \right ) x^{2}\right )}^{{1}/{3}} x} \\ \end{align*}
Mathematica. Time used: 60.104 (sec). Leaf size: 358
ode=D[y[x],x] == (3*x^2-2*y[x]-y[x]^3)/(2*x+3*x*y[x]^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{27 x^5+27 c_1 x^2+\sqrt {864 x^6+729 x^4 \left (x^3+c_1\right ){}^2}}}{3 \sqrt [3]{2} x}-\frac {2 \sqrt [3]{2} x}{\sqrt [3]{27 x^5+27 c_1 x^2+\sqrt {864 x^6+729 x^4 \left (x^3+c_1\right ){}^2}}} \\ y(x)\to \frac {\sqrt [3]{2} \left (1+i \sqrt {3}\right ) x}{\sqrt [3]{27 x^5+27 c_1 x^2+\sqrt {864 x^6+729 x^4 \left (x^3+c_1\right ){}^2}}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 x^5+27 c_1 x^2+\sqrt {864 x^6+729 x^4 \left (x^3+c_1\right ){}^2}}}{6 \sqrt [3]{2} x} \\ y(x)\to \frac {\sqrt [3]{2} \left (1-i \sqrt {3}\right ) x}{\sqrt [3]{27 x^5+27 c_1 x^2+\sqrt {864 x^6+729 x^4 \left (x^3+c_1\right ){}^2}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 x^5+27 c_1 x^2+\sqrt {864 x^6+729 x^4 \left (x^3+c_1\right ){}^2}}}{6 \sqrt [3]{2} x} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (3*x**2 - y(x)**3 - 2*y(x))/(3*x*y(x)**2 + 2*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out