78.19.7 problem 2 (c)

Internal problem ID [18355]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 29. Regular singular Points. Problems at page 227
Problem number : 2 (c)
Date solved : Monday, March 31, 2025 at 05:26:17 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\sin \left (x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.093 (sec). Leaf size: 58
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+sin(x)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 x \left (1-\frac {1}{2} x +\frac {1}{12} x^{2}+\frac {1}{144} x^{3}-\frac {13}{2880} x^{4}+\frac {29}{86400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (\ln \left (x \right ) \left (-x +\frac {1}{2} x^{2}-\frac {1}{12} x^{3}-\frac {1}{144} x^{4}+\frac {13}{2880} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (1-\frac {3}{4} x^{2}+\frac {2}{9} x^{3}-\frac {25}{1728} x^{4}-\frac {689}{86400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 85
ode=x^2*D[y[x],{x,2}]+Sin[x]*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {-13 x^4+528 x^3-2160 x^2+1728 x+1728}{1728}-\frac {1}{144} x \left (x^3+12 x^2-72 x+144\right ) \log (x)\right )+c_2 \left (-\frac {13 x^5}{2880}+\frac {x^4}{144}+\frac {x^3}{12}-\frac {x^2}{2}+x\right ) \]
Sympy. Time used: 4.142 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + y(x)*sin(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} x + C_{1} + O\left (x^{6}\right ) \]