78.12.28 problem 5 (d)

Internal problem ID [18244]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 17. The Homogeneous Equation with Constant Coefficients. Problems at page 125
Problem number : 5 (d)
Date solved : Monday, March 31, 2025 at 05:23:39 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 4 x^{2} y^{\prime \prime }-3 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=4*x^2*diff(diff(y(x),x),x)-3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_2 \,x^{2}+c_1}{\sqrt {x}} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 20
ode=4*x^2*D[y[x],{x,2}]-3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 x^2+c_1}{\sqrt {x}} \]
Sympy. Time used: 0.057 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) - 3*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{\sqrt {x}} + C_{2} x^{\frac {3}{2}} \]