75.16.12 problem 485

Internal problem ID [16914]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132
Problem number : 485
Date solved : Monday, March 31, 2025 at 03:35:23 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+4 y^{\prime }+8 y&={\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 29
ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+8*y(x) = exp(2*x)*(sin(2*x)+cos(2*x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-2 x} \left (\left (c_2 +\frac {{\mathrm e}^{4 x}}{16}\right ) \sin \left (2 x \right )+\cos \left (2 x \right ) c_1 \right ) \]
Mathematica. Time used: 0.312 (sec). Leaf size: 85
ode=D[y[x],{x,2}]+4*D[y[x],x]+8*y[x]==Exp[2*x]*(Sin[2*x]+Cos[2*x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{8} e^{-2 x} \left (8 \sin (2 x) \int _1^x\frac {1}{2} e^{4 K[1]} \cos (2 K[1]) (\cos (2 K[1])+\sin (2 K[1]))dK[1]+8 c_1 \sin (2 x)+\cos (2 x) \left (-e^{4 x} \sin ^2(2 x)+8 c_2\right )\right ) \]
Sympy. Time used: 0.452 (sec). Leaf size: 49
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(sin(2*x) + cos(2*x))*exp(2*x) + 8*y(x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (2 x \right )} + C_{2} \cos {\left (2 x \right )}\right ) e^{- 2 x} + \frac {\sqrt {2} \left (\sin {\left (2 x + \frac {\pi }{4} \right )} - \cos {\left (2 x + \frac {\pi }{4} \right )}\right ) e^{2 x}}{32} \]