75.2.15 problem 35

Internal problem ID [16621]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 2. The method of isoclines. Exercises page 27
Problem number : 35
Date solved : Monday, March 31, 2025 at 03:01:49 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }&=x^{2}+y \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 18
ode:=diff(y(x),x) = y(x)+x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x^{2}-2 x -2+{\mathrm e}^{x} c_1 \]
Mathematica. Time used: 0.076 (sec). Leaf size: 21
ode=D[y[x],x]==x^2+y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -x^2-2 x+c_1 e^x-2 \]
Sympy. Time used: 0.111 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{x} - x^{2} - 2 x - 2 \]