Internal
problem
ID
[16096]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Review
exercises,
page
80
Problem
number
:
31
Date
solved
:
Monday, March 31, 2025 at 02:41:49 PM
CAS
classification
:
[[_homogeneous, `class C`], _exact, _dAlembert]
With initial conditions
ode:=cos(t-y(t))+(1-cos(t-y(t)))*diff(y(t),t) = 0; ic:=y(Pi) = Pi; dsolve([ode,ic],y(t), singsol=all);
ode=Cos[t-y[t]]+(1-Cos[t-y[t]])*D[y[t],t]==0; ic={y[Pi]==Pi}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((1 - cos(t - y(t)))*Derivative(y(t), t) + cos(t - y(t)),0) ics = {y(pi): pi} dsolve(ode,func=y(t),ics=ics)