73.24.7 problem 34.5 (g)

Internal problem ID [15616]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 34. Power series solutions II: Generalization and theory. Additional Exercises. page 678
Problem number : 34.5 (g)
Date solved : Monday, March 31, 2025 at 01:43:02 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\frac {\left (1+{\mathrm e}^{x}\right ) y}{1-{\mathrm e}^{x}}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 3 \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 159
Order:=6; 
ode:=diff(diff(y(x),x),x)+(exp(x)+1)/(-exp(x)+1)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=3);
 
\[ y = \left (1+\frac {\coth \left (\frac {3}{2}\right ) \left (x -3\right )^{2}}{2}-\frac {{\mathrm e}^{3} \left (x -3\right )^{3}}{3 \left (-1+{\mathrm e}^{3}\right )^{2}}+\frac {\left (-1+{\mathrm e}^{9}+3 \,{\mathrm e}^{6}+{\mathrm e}^{3}\right ) \left (x -3\right )^{4}}{24 \left (-1+{\mathrm e}^{3}\right )^{3}}+\frac {\left (6 \,{\mathrm e}^{3}-8 \,{\mathrm e}^{6}-10 \,{\mathrm e}^{9}\right ) \left (x -3\right )^{5}}{120 \left (-1+{\mathrm e}^{3}\right )^{4}}\right ) y \left (3\right )+\left (x -3+\frac {\left ({\mathrm e}^{6}-1\right ) \left (x -3\right )^{3}}{6 \left (-1+{\mathrm e}^{3}\right )^{2}}+\frac {\left (-{\mathrm e}^{6}+{\mathrm e}^{3}\right ) \left (x -3\right )^{4}}{6 \left (-1+{\mathrm e}^{3}\right )^{3}}+\frac {\left (1+{\mathrm e}^{12}+6 \,{\mathrm e}^{9}-2 \,{\mathrm e}^{6}-6 \,{\mathrm e}^{3}\right ) \left (x -3\right )^{5}}{120 \left (-1+{\mathrm e}^{3}\right )^{4}}\right ) y^{\prime }\left (3\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.005 (sec). Leaf size: 275
ode=D[y[x],{x,2}]+(1+Exp[x])/(1-Exp[x])*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,3,5}]
 
\[ y(x)\to c_1 \left (-\frac {\left (e^3+4 e^6+e^9\right ) (x-3)^5}{60 \left (e^3-1\right )^4}-\frac {e^3 \left (1+e^3\right ) (x-3)^5}{60 \left (e^3-1\right )^3}+\frac {e^3 \left (-1-e^3\right ) (x-3)^5}{20 \left (e^3-1\right )^3}-\frac {\left (-e^3-e^6\right ) (x-3)^4}{12 \left (e^3-1\right )^3}+\frac {\left (-1-e^3\right )^2 (x-3)^4}{24 \left (e^3-1\right )^2}-\frac {e^3 (x-3)^3}{3 \left (e^3-1\right )^2}+\frac {\left (1+e^3\right ) (x-3)^2}{2 \left (e^3-1\right )}+1\right )+c_2 \left (-\frac {\left (-e^3-e^6\right ) (x-3)^5}{20 \left (e^3-1\right )^3}+\frac {\left (1+e^3\right )^2 (x-3)^5}{120 \left (e^3-1\right )^2}-\frac {e^3 (x-3)^4}{6 \left (e^3-1\right )^2}+\frac {\left (1+e^3\right ) (x-3)^3}{6 \left (e^3-1\right )}+x-3\right ) \]
Sympy. Time used: 1.233 (sec). Leaf size: 109
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 2)) + (exp(x) + 1)*y(x)/(1 - exp(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=3,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {\left (x - 3\right )^{4} \left (e^{x + 3} + 1\right )^{2}}{24 \left (- 2 e^{x + 3} + e^{2 x + 6} + 1\right )} + \frac {\left (x - 3\right )^{2} e^{x + 3}}{2 \left (e^{x + 3} - 1\right )} + \frac {\left (x - 3\right )^{2}}{2 \left (e^{x + 3} - 1\right )} + 1\right ) + C_{1} \left (x + \frac {\left (x - 3\right )^{3} e^{x + 3}}{6 \left (e^{x + 3} - 1\right )} + \frac {\left (x - 3\right )^{3}}{6 \left (e^{x + 3} - 1\right )} - 3\right ) + O\left (x^{6}\right ) \]