72.9.8 problem 8

Internal problem ID [14733]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number : 8
Date solved : Monday, March 31, 2025 at 12:57:01 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-3 x \left (t \right )+2 \pi y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=4 x \left (t \right )-y \left (t \right ) \end{align*}

Maple. Time used: 0.105 (sec). Leaf size: 118
ode:=[diff(x(t),t) = -3*x(t)+2*Pi*y(t), diff(y(t),t) = 4*x(t)-y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{-\left (2+\sqrt {1+8 \pi }\right ) t}+c_2 \,{\mathrm e}^{\left (-2+\sqrt {1+8 \pi }\right ) t} \\ y \left (t \right ) &= -\frac {c_1 \,{\mathrm e}^{-\left (2+\sqrt {1+8 \pi }\right ) t} \sqrt {1+8 \pi }-c_2 \,{\mathrm e}^{\left (-2+\sqrt {1+8 \pi }\right ) t} \sqrt {1+8 \pi }-c_1 \,{\mathrm e}^{-\left (2+\sqrt {1+8 \pi }\right ) t}-c_2 \,{\mathrm e}^{\left (-2+\sqrt {1+8 \pi }\right ) t}}{2 \pi } \\ \end{align*}
Mathematica. Time used: 0.007 (sec). Leaf size: 189
ode={D[x[t],t]==-3*x[t]+2*Pi*y[t],D[y[t],t]==4*x[t]-y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {e^{-\left (\left (2+\sqrt {1+8 \pi }\right ) t\right )} \left (c_1 \left (\left (\sqrt {1+8 \pi }-1\right ) e^{2 \sqrt {1+8 \pi } t}+1+\sqrt {1+8 \pi }\right )+2 \pi c_2 \left (e^{2 \sqrt {1+8 \pi } t}-1\right )\right )}{2 \sqrt {1+8 \pi }} \\ y(t)\to \frac {e^{-\left (\left (2+\sqrt {1+8 \pi }\right ) t\right )} \left (4 c_1 \left (e^{2 \sqrt {1+8 \pi } t}-1\right )+c_2 \left (\left (1+\sqrt {1+8 \pi }\right ) e^{2 \sqrt {1+8 \pi } t}-1+\sqrt {1+8 \pi }\right )\right )}{2 \sqrt {1+8 \pi }} \\ \end{align*}
Sympy. Time used: 0.226 (sec). Leaf size: 90
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(3*x(t) - 2*pi*y(t) + Derivative(x(t), t),0),Eq(-4*x(t) + y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \frac {C_{1} \left (1 - \sqrt {1 + 8 \pi }\right ) e^{- t \left (2 - \sqrt {1 + 8 \pi }\right )}}{4} - \frac {C_{2} \left (1 + \sqrt {1 + 8 \pi }\right ) e^{- t \left (2 + \sqrt {1 + 8 \pi }\right )}}{4}, \ y{\left (t \right )} = C_{1} e^{- t \left (2 - \sqrt {1 + 8 \pi }\right )} + C_{2} e^{- t \left (2 + \sqrt {1 + 8 \pi }\right )}\right ] \]