Internal
problem
ID
[540]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
4.
Laplace
transform
methods.
Section
4.2
(Transformation
of
initial
value
problems).
Problems
at
page
287
Problem
number
:
11
Date
solved
:
Saturday, March 29, 2025 at 04:56:13 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = 6*x(t)+3*y(t)]; ic:=x(0) = 1y(0) = -2; dsolve([ode,ic]);
ode={D[x[t],t]==2*x[t]+y[t],D[y[t],t]==6*x[t]+3*y[t]}; ic={x[0]==1,y[0]==-2}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) - y(t) + Derivative(x(t), t),0),Eq(-6*x(t) - 3*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)