Internal
problem
ID
[13589]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
9,
The
Laplace
transform.
Section
9.3,
Exercises
page
452
Problem
number
:
17
Date
solved
:
Monday, March 31, 2025 at 08:02:00 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+4*y(t) = piecewise(0 < t and t < 2*Pi,-4*t+8*Pi,2 < t,0); ic:=y(0) = 2, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+4*y[t]==Piecewise[{{-4*t+8*Pi,0<t<2*Pi},{0,t>2*Pi}}]; ic={y[0]==2,Derivative[1][y][0]==0}; DSolve[{ode,ic},{y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((-4*t + 8*pi, (t > 0) & (t < 2*pi)), (0, t > 2*pi)) + 4*y(t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 2, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)