Internal
problem
ID
[13579]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
9,
The
Laplace
transform.
Section
9.3,
Exercises
page
452
Problem
number
:
7
Date
solved
:
Monday, March 31, 2025 at 08:01:41 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-diff(y(t),t)-2*y(t) = 18*exp(-t)*sin(3*t); ic:=y(0) = 0, D(y)(0) = 3; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]-D[y[t],t]-2*y[t]==18*Exp[-t]*Sin[3*t]; ic={y[0]==0,Derivative[1][y][0]==3}; DSolve[{ode,ic},{y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-2*y(t) - Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 18*exp(-t)*sin(3*t),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 3} dsolve(ode,func=y(t),ics=ics)