Internal
problem
ID
[13545]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
7,
Systems
of
linear
differential
equations.
Section
7.1.
Exercises
page
277
Problem
number
:
13
Date
solved
:
Monday, March 31, 2025 at 08:00:57 AM
CAS
classification
:
system_of_ODEs
ode:=[2*diff(x(t),t)+diff(y(t),t)+x(t)+y(t) = t^2+4*t, diff(x(t),t)+diff(y(t),t)+2*x(t)+2*y(t) = 2*t^2-2*t]; dsolve(ode);
ode={2*D[x[t],t]+D[y[t],t]+x[t]+y[t]==t^2+4*t,D[x[t],t]+D[y[t],t]+2*x[t]+2*y[t]==2*t^2-2*t}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-t**2 - 4*t + x(t) + y(t) + 2*Derivative(x(t), t) + Derivative(y(t), t),0),Eq(-2*t**2 + 2*t + 2*x(t) + 2*y(t) + Derivative(x(t), t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)