Internal
problem
ID
[13502]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
6,
Series
solutions
of
linear
differential
equations.
Section
6.1.
Exercises
page
232
Problem
number
:
14
Date
solved
:
Monday, March 31, 2025 at 07:59:47 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(2*x^2-3)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+y(x) = 0; ic:=y(0) = -1, D(y)(0) = 5; dsolve([ode,ic],y(x),type='series',x=0);
ode=(2*x^2-3)*D[y[x],{x,2}]-2*x*D[y[x],x]+y[x]==0; ic={y[0]==-1,Derivative[1][y][0] ==5}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) + (2*x**2 - 3)*Derivative(y(x), (x, 2)) + y(x),0) ics = {y(0): -1, Subs(Derivative(y(x), x), x, 0): 5} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)